Metamath Proof Explorer


Theorem loge

Description: The natural logarithm of _e . One case of Property 1b of Cohen p. 301. (Contributed by Steve Rodriguez, 25-Nov-2007)

Ref Expression
Assertion loge log e = 1

Proof

Step Hyp Ref Expression
1 df-e e = e 1
2 1 eqcomi e 1 = e
3 epr e +
4 1re 1
5 relogeftb e + 1 log e = 1 e 1 = e
6 3 4 5 mp2an log e = 1 e 1 = e
7 2 6 mpbir log e = 1