Metamath Proof Explorer


Theorem logeq0im1

Description: If the logarithm of a number is 0, the number must be 1. (Contributed by David A. Wheeler, 22-Jul-2017)

Ref Expression
Assertion logeq0im1 A A 0 log A = 0 A = 1

Proof

Step Hyp Ref Expression
1 eflog A A 0 e log A = A
2 1 3adant3 A A 0 log A = 0 e log A = A
3 fveq2 log A = 0 e log A = e 0
4 ef0 e 0 = 1
5 3 4 eqtrdi log A = 0 e log A = 1
6 5 3ad2ant3 A A 0 log A = 0 e log A = 1
7 2 6 eqtr3d A A 0 log A = 0 A = 1