Step |
Hyp |
Ref |
Expression |
1 |
|
fzfid |
|
2 |
|
simpr |
|
3 |
|
elfznn |
|
4 |
3
|
nnrpd |
|
5 |
|
rpdivcl |
|
6 |
2 4 5
|
syl2an |
|
7 |
6
|
relogcld |
|
8 |
|
simpll |
|
9 |
7 8
|
reexpcld |
|
10 |
1 9
|
fsumrecl |
|
11 |
|
relogcl |
|
12 |
|
id |
|
13 |
|
reexpcl |
|
14 |
11 12 13
|
syl2anr |
|
15 |
|
faccl |
|
16 |
15
|
adantr |
|
17 |
16
|
nnred |
|
18 |
|
fzfid |
|
19 |
11
|
adantl |
|
20 |
|
elfznn0 |
|
21 |
|
reexpcl |
|
22 |
19 20 21
|
syl2an |
|
23 |
20
|
adantl |
|
24 |
23
|
faccld |
|
25 |
22 24
|
nndivred |
|
26 |
18 25
|
fsumrecl |
|
27 |
17 26
|
remulcld |
|
28 |
14 27
|
resubcld |
|
29 |
10 28
|
resubcld |
|
30 |
29 2
|
rerpdivcld |
|
31 |
|
rerpdivcl |
|
32 |
28 31
|
sylancom |
|
33 |
|
1red |
|
34 |
15
|
nncnd |
|
35 |
|
simpl |
|
36 |
35
|
oveq2d |
|
37 |
36
|
oveq1d |
|
38 |
37
|
mpteq2dva |
|
39 |
38
|
breq1d |
|
40 |
11
|
recnd |
|
41 |
|
id |
|
42 |
|
cxpexp |
|
43 |
40 41 42
|
syl2anr |
|
44 |
|
rpcn |
|
45 |
44
|
adantl |
|
46 |
45
|
cxp1d |
|
47 |
43 46
|
oveq12d |
|
48 |
47
|
mpteq2dva |
|
49 |
|
nn0cn |
|
50 |
|
1rp |
|
51 |
|
cxploglim2 |
|
52 |
49 50 51
|
sylancl |
|
53 |
48 52
|
eqbrtrrd |
|
54 |
39 53
|
vtoclga |
|
55 |
|
rerpdivcl |
|
56 |
14 55
|
sylancom |
|
57 |
56
|
recnd |
|
58 |
10
|
recnd |
|
59 |
14
|
recnd |
|
60 |
34
|
adantr |
|
61 |
26
|
recnd |
|
62 |
60 61
|
mulcld |
|
63 |
59 62
|
subcld |
|
64 |
58 63
|
subcld |
|
65 |
|
rpcnne0 |
|
66 |
65
|
adantl |
|
67 |
66
|
simpld |
|
68 |
66
|
simprd |
|
69 |
64 67 68
|
divcld |
|
70 |
69
|
adantrr |
|
71 |
15
|
adantr |
|
72 |
71
|
nncnd |
|
73 |
70 72
|
subcld |
|
74 |
73
|
abscld |
|
75 |
56
|
adantrr |
|
76 |
75
|
recnd |
|
77 |
76
|
abscld |
|
78 |
|
ioorp |
|
79 |
78
|
eqcomi |
|
80 |
|
nnuz |
|
81 |
|
1z |
|
82 |
81
|
a1i |
|
83 |
|
1red |
|
84 |
|
1re |
|
85 |
|
1nn0 |
|
86 |
84 85
|
nn0addge1i |
|
87 |
86
|
a1i |
|
88 |
|
0red |
|
89 |
71
|
adantr |
|
90 |
89
|
nnred |
|
91 |
|
rpre |
|
92 |
91
|
adantl |
|
93 |
|
fzfid |
|
94 |
|
simprl |
|
95 |
|
rpdivcl |
|
96 |
94 95
|
sylan |
|
97 |
96
|
relogcld |
|
98 |
|
reexpcl |
|
99 |
97 20 98
|
syl2an |
|
100 |
20
|
adantl |
|
101 |
100
|
faccld |
|
102 |
99 101
|
nndivred |
|
103 |
93 102
|
fsumrecl |
|
104 |
92 103
|
remulcld |
|
105 |
90 104
|
remulcld |
|
106 |
|
simpll |
|
107 |
97 106
|
reexpcld |
|
108 |
|
nnrp |
|
109 |
108 107
|
sylan2 |
|
110 |
|
reelprrecn |
|
111 |
110
|
a1i |
|
112 |
104
|
recnd |
|
113 |
107 89
|
nndivred |
|
114 |
|
simpl |
|
115 |
|
advlogexp |
|
116 |
94 114 115
|
syl2anc |
|
117 |
111 112 113 116 72
|
dvmptcmul |
|
118 |
107
|
recnd |
|
119 |
72
|
adantr |
|
120 |
71
|
nnne0d |
|
121 |
120
|
adantr |
|
122 |
118 119 121
|
divcan2d |
|
123 |
122
|
mpteq2dva |
|
124 |
117 123
|
eqtrd |
|
125 |
|
oveq2 |
|
126 |
125
|
fveq2d |
|
127 |
126
|
oveq1d |
|
128 |
94
|
rpxrd |
|
129 |
|
simp1rl |
|
130 |
|
simp2r |
|
131 |
129 130
|
rpdivcld |
|
132 |
131
|
relogcld |
|
133 |
|
simp2l |
|
134 |
129 133
|
rpdivcld |
|
135 |
134
|
relogcld |
|
136 |
|
simp1l |
|
137 |
|
log1 |
|
138 |
130
|
rpcnd |
|
139 |
138
|
mulid2d |
|
140 |
|
simp33 |
|
141 |
139 140
|
eqbrtrd |
|
142 |
|
1red |
|
143 |
129
|
rpred |
|
144 |
142 143 130
|
lemuldivd |
|
145 |
141 144
|
mpbid |
|
146 |
|
logleb |
|
147 |
50 131 146
|
sylancr |
|
148 |
145 147
|
mpbid |
|
149 |
137 148
|
eqbrtrrid |
|
150 |
|
simp32 |
|
151 |
133 130 129
|
lediv2d |
|
152 |
150 151
|
mpbid |
|
153 |
131 134
|
logled |
|
154 |
152 153
|
mpbid |
|
155 |
|
leexp1a |
|
156 |
132 135 136 149 154 155
|
syl32anc |
|
157 |
|
eqid |
|
158 |
96
|
3ad2antr1 |
|
159 |
158
|
relogcld |
|
160 |
|
simpll |
|
161 |
|
rpcn |
|
162 |
161
|
adantl |
|
163 |
162
|
3ad2antr1 |
|
164 |
163
|
mulid2d |
|
165 |
|
simpr3 |
|
166 |
164 165
|
eqbrtrd |
|
167 |
|
1red |
|
168 |
94
|
rpred |
|
169 |
168
|
adantr |
|
170 |
|
simpr1 |
|
171 |
167 169 170
|
lemuldivd |
|
172 |
166 171
|
mpbid |
|
173 |
|
logleb |
|
174 |
50 158 173
|
sylancr |
|
175 |
172 174
|
mpbid |
|
176 |
137 175
|
eqbrtrrid |
|
177 |
159 160 176
|
expge0d |
|
178 |
50
|
a1i |
|
179 |
|
1le1 |
|
180 |
179
|
a1i |
|
181 |
|
simprr |
|
182 |
168
|
leidd |
|
183 |
79 80 82 83 87 88 105 107 109 124 127 128 156 157 177 178 94 180 181 182
|
dvfsumlem4 |
|
184 |
|
fzfid |
|
185 |
94 4 5
|
syl2an |
|
186 |
185
|
relogcld |
|
187 |
|
simpll |
|
188 |
186 187
|
reexpcld |
|
189 |
184 188
|
fsumrecl |
|
190 |
189
|
recnd |
|
191 |
94
|
rpcnd |
|
192 |
72 191
|
mulcld |
|
193 |
11
|
ad2antrl |
|
194 |
193
|
recnd |
|
195 |
194 114
|
expcld |
|
196 |
|
fzfid |
|
197 |
193 20 21
|
syl2an |
|
198 |
20
|
adantl |
|
199 |
198
|
faccld |
|
200 |
197 199
|
nndivred |
|
201 |
200
|
recnd |
|
202 |
196 201
|
fsumcl |
|
203 |
72 202
|
mulcld |
|
204 |
195 203
|
subcld |
|
205 |
190 192 204
|
sub32d |
|
206 |
|
eqidd |
|
207 |
|
simpr |
|
208 |
207
|
fveq2d |
|
209 |
208
|
oveq2d |
|
210 |
209
|
sumeq1d |
|
211 |
|
oveq2 |
|
212 |
65
|
ad2antrl |
|
213 |
|
divid |
|
214 |
212 213
|
syl |
|
215 |
211 214
|
sylan9eqr |
|
216 |
215
|
adantr |
|
217 |
216
|
fveq2d |
|
218 |
217 137
|
eqtrdi |
|
219 |
218
|
oveq1d |
|
220 |
219
|
oveq1d |
|
221 |
220
|
sumeq2dv |
|
222 |
|
nn0uz |
|
223 |
114 222
|
eleqtrdi |
|
224 |
|
eluzfz1 |
|
225 |
223 224
|
syl |
|
226 |
225
|
adantr |
|
227 |
226
|
snssd |
|
228 |
|
elsni |
|
229 |
228
|
adantl |
|
230 |
|
oveq2 |
|
231 |
|
0exp0e1 |
|
232 |
230 231
|
eqtrdi |
|
233 |
|
fveq2 |
|
234 |
|
fac0 |
|
235 |
233 234
|
eqtrdi |
|
236 |
232 235
|
oveq12d |
|
237 |
|
1div1e1 |
|
238 |
236 237
|
eqtrdi |
|
239 |
229 238
|
syl |
|
240 |
|
ax-1cn |
|
241 |
239 240
|
eqeltrdi |
|
242 |
|
eldifi |
|
243 |
242
|
adantl |
|
244 |
243 20
|
syl |
|
245 |
|
eldifsni |
|
246 |
245
|
adantl |
|
247 |
|
eldifsn |
|
248 |
244 246 247
|
sylanbrc |
|
249 |
|
dfn2 |
|
250 |
248 249
|
eleqtrrdi |
|
251 |
250
|
0expd |
|
252 |
251
|
oveq1d |
|
253 |
244
|
faccld |
|
254 |
253
|
nncnd |
|
255 |
253
|
nnne0d |
|
256 |
254 255
|
div0d |
|
257 |
252 256
|
eqtrd |
|
258 |
|
fzfid |
|
259 |
227 241 257 258
|
fsumss |
|
260 |
221 259
|
eqtr4d |
|
261 |
|
0cn |
|
262 |
238
|
sumsn |
|
263 |
261 240 262
|
mp2an |
|
264 |
260 263
|
eqtrdi |
|
265 |
207 264
|
oveq12d |
|
266 |
191
|
mulid1d |
|
267 |
266
|
adantr |
|
268 |
265 267
|
eqtrd |
|
269 |
268
|
oveq2d |
|
270 |
210 269
|
oveq12d |
|
271 |
|
ovexd |
|
272 |
206 270 94 271
|
fvmptd |
|
273 |
|
simpr |
|
274 |
273
|
fveq2d |
|
275 |
|
flid |
|
276 |
81 275
|
ax-mp |
|
277 |
274 276
|
eqtrdi |
|
278 |
277
|
oveq2d |
|
279 |
278
|
sumeq1d |
|
280 |
191
|
div1d |
|
281 |
280
|
adantr |
|
282 |
281
|
fveq2d |
|
283 |
282
|
oveq1d |
|
284 |
195
|
adantr |
|
285 |
283 284
|
eqeltrd |
|
286 |
|
oveq2 |
|
287 |
286
|
fveq2d |
|
288 |
287
|
oveq1d |
|
289 |
288
|
fsum1 |
|
290 |
81 285 289
|
sylancr |
|
291 |
279 290 283
|
3eqtrd |
|
292 |
273
|
oveq2d |
|
293 |
292 281
|
eqtrd |
|
294 |
293
|
fveq2d |
|
295 |
294
|
adantr |
|
296 |
295
|
oveq1d |
|
297 |
296
|
oveq1d |
|
298 |
297
|
sumeq2dv |
|
299 |
273 298
|
oveq12d |
|
300 |
202
|
adantr |
|
301 |
300
|
mulid2d |
|
302 |
299 301
|
eqtrd |
|
303 |
302
|
oveq2d |
|
304 |
291 303
|
oveq12d |
|
305 |
|
ovexd |
|
306 |
206 304 178 305
|
fvmptd |
|
307 |
272 306
|
oveq12d |
|
308 |
70 72 191
|
subdird |
|
309 |
64
|
adantrr |
|
310 |
212
|
simprd |
|
311 |
309 191 310
|
divcan1d |
|
312 |
311
|
oveq1d |
|
313 |
308 312
|
eqtrd |
|
314 |
205 307 313
|
3eqtr4d |
|
315 |
314
|
fveq2d |
|
316 |
73 191
|
absmuld |
|
317 |
|
rprege0 |
|
318 |
317
|
ad2antrl |
|
319 |
|
absid |
|
320 |
318 319
|
syl |
|
321 |
320
|
oveq2d |
|
322 |
315 316 321
|
3eqtrd |
|
323 |
|
1cnd |
|
324 |
294
|
oveq1d |
|
325 |
323 324
|
csbied |
|
326 |
183 322 325
|
3brtr3d |
|
327 |
14
|
adantrr |
|
328 |
74 327 94
|
lemuldivd |
|
329 |
326 328
|
mpbid |
|
330 |
75
|
leabsd |
|
331 |
74 75 77 329 330
|
letrd |
|
332 |
57
|
adantrr |
|
333 |
332
|
subid1d |
|
334 |
333
|
fveq2d |
|
335 |
331 334
|
breqtrrd |
|
336 |
33 34 54 57 69 335
|
rlimsqzlem |
|
337 |
|
divsubdir |
|
338 |
59 62 66 337
|
syl3anc |
|
339 |
338
|
mpteq2dva |
|
340 |
|
rerpdivcl |
|
341 |
27 340
|
sylancom |
|
342 |
|
divass |
|
343 |
60 61 66 342
|
syl3anc |
|
344 |
25
|
recnd |
|
345 |
18 67 344 68
|
fsumdivc |
|
346 |
22
|
recnd |
|
347 |
24
|
nnrpd |
|
348 |
347
|
rpcnne0d |
|
349 |
66
|
adantr |
|
350 |
|
divdiv32 |
|
351 |
346 348 349 350
|
syl3anc |
|
352 |
351
|
sumeq2dv |
|
353 |
345 352
|
eqtrd |
|
354 |
353
|
oveq2d |
|
355 |
343 354
|
eqtrd |
|
356 |
355
|
mpteq2dva |
|
357 |
2
|
adantr |
|
358 |
22 357
|
rerpdivcld |
|
359 |
358 24
|
nndivred |
|
360 |
18 359
|
fsumrecl |
|
361 |
|
rpssre |
|
362 |
|
rlimconst |
|
363 |
361 34 362
|
sylancr |
|
364 |
361
|
a1i |
|
365 |
|
fzfid |
|
366 |
359
|
anasss |
|
367 |
358
|
an32s |
|
368 |
20
|
adantl |
|
369 |
368
|
faccld |
|
370 |
369
|
nnred |
|
371 |
370
|
adantr |
|
372 |
368 53
|
syl |
|
373 |
369
|
nncnd |
|
374 |
|
rlimconst |
|
375 |
361 373 374
|
sylancr |
|
376 |
369
|
nnne0d |
|
377 |
376
|
adantr |
|
378 |
367 371 372 375 376 377
|
rlimdiv |
|
379 |
373 376
|
div0d |
|
380 |
378 379
|
breqtrd |
|
381 |
364 365 366 380
|
fsumrlim |
|
382 |
|
fzfi |
|
383 |
382
|
olci |
|
384 |
|
sumz |
|
385 |
383 384
|
ax-mp |
|
386 |
381 385
|
breqtrdi |
|
387 |
17 360 363 386
|
rlimmul |
|
388 |
34
|
mul01d |
|
389 |
387 388
|
breqtrd |
|
390 |
356 389
|
eqbrtrd |
|
391 |
56 341 54 390
|
rlimsub |
|
392 |
|
0m0e0 |
|
393 |
391 392
|
breqtrdi |
|
394 |
339 393
|
eqbrtrd |
|
395 |
30 32 336 394
|
rlimadd |
|
396 |
|
divsubdir |
|
397 |
58 63 66 396
|
syl3anc |
|
398 |
397
|
oveq1d |
|
399 |
10 2
|
rerpdivcld |
|
400 |
399
|
recnd |
|
401 |
32
|
recnd |
|
402 |
400 401
|
npcand |
|
403 |
398 402
|
eqtrd |
|
404 |
403
|
mpteq2dva |
|
405 |
34
|
addid1d |
|
406 |
395 404 405
|
3brtr3d |
|