Metamath Proof Explorer


Theorem logexprlim

Description: The sum sum_ n <_ x , log ^ N ( x / n ) has the asymptotic expansion ( N ! ) x + o ( x ) . (More precisely, the omitted term has order O ( log ^ N ( x ) / x ) .) (Contributed by Mario Carneiro, 22-May-2016)

Ref Expression
Assertion logexprlim N 0 x + n = 1 x log x n N x N !

Proof

Step Hyp Ref Expression
1 fzfid N 0 x + 1 x Fin
2 simpr N 0 x + x +
3 elfznn n 1 x n
4 3 nnrpd n 1 x n +
5 rpdivcl x + n + x n +
6 2 4 5 syl2an N 0 x + n 1 x x n +
7 6 relogcld N 0 x + n 1 x log x n
8 simpll N 0 x + n 1 x N 0
9 7 8 reexpcld N 0 x + n 1 x log x n N
10 1 9 fsumrecl N 0 x + n = 1 x log x n N
11 relogcl x + log x
12 id N 0 N 0
13 reexpcl log x N 0 log x N
14 11 12 13 syl2anr N 0 x + log x N
15 faccl N 0 N !
16 15 adantr N 0 x + N !
17 16 nnred N 0 x + N !
18 fzfid N 0 x + 0 N Fin
19 11 adantl N 0 x + log x
20 elfznn0 k 0 N k 0
21 reexpcl log x k 0 log x k
22 19 20 21 syl2an N 0 x + k 0 N log x k
23 20 adantl N 0 x + k 0 N k 0
24 23 faccld N 0 x + k 0 N k !
25 22 24 nndivred N 0 x + k 0 N log x k k !
26 18 25 fsumrecl N 0 x + k = 0 N log x k k !
27 17 26 remulcld N 0 x + N ! k = 0 N log x k k !
28 14 27 resubcld N 0 x + log x N N ! k = 0 N log x k k !
29 10 28 resubcld N 0 x + n = 1 x log x n N log x N N ! k = 0 N log x k k !
30 29 2 rerpdivcld N 0 x + n = 1 x log x n N log x N N ! k = 0 N log x k k ! x
31 rerpdivcl log x N N ! k = 0 N log x k k ! x + log x N N ! k = 0 N log x k k ! x
32 28 31 sylancom N 0 x + log x N N ! k = 0 N log x k k ! x
33 1red N 0 1
34 15 nncnd N 0 N !
35 simpl k = N x + k = N
36 35 oveq2d k = N x + log x k = log x N
37 36 oveq1d k = N x + log x k x = log x N x
38 37 mpteq2dva k = N x + log x k x = x + log x N x
39 38 breq1d k = N x + log x k x 0 x + log x N x 0
40 11 recnd x + log x
41 id k 0 k 0
42 cxpexp log x k 0 log x k = log x k
43 40 41 42 syl2anr k 0 x + log x k = log x k
44 rpcn x + x
45 44 adantl k 0 x + x
46 45 cxp1d k 0 x + x 1 = x
47 43 46 oveq12d k 0 x + log x k x 1 = log x k x
48 47 mpteq2dva k 0 x + log x k x 1 = x + log x k x
49 nn0cn k 0 k
50 1rp 1 +
51 cxploglim2 k 1 + x + log x k x 1 0
52 49 50 51 sylancl k 0 x + log x k x 1 0
53 48 52 eqbrtrrd k 0 x + log x k x 0
54 39 53 vtoclga N 0 x + log x N x 0
55 rerpdivcl log x N x + log x N x
56 14 55 sylancom N 0 x + log x N x
57 56 recnd N 0 x + log x N x
58 10 recnd N 0 x + n = 1 x log x n N
59 14 recnd N 0 x + log x N
60 34 adantr N 0 x + N !
61 26 recnd N 0 x + k = 0 N log x k k !
62 60 61 mulcld N 0 x + N ! k = 0 N log x k k !
63 59 62 subcld N 0 x + log x N N ! k = 0 N log x k k !
64 58 63 subcld N 0 x + n = 1 x log x n N log x N N ! k = 0 N log x k k !
65 rpcnne0 x + x x 0
66 65 adantl N 0 x + x x 0
67 66 simpld N 0 x + x
68 66 simprd N 0 x + x 0
69 64 67 68 divcld N 0 x + n = 1 x log x n N log x N N ! k = 0 N log x k k ! x
70 69 adantrr N 0 x + 1 x n = 1 x log x n N log x N N ! k = 0 N log x k k ! x
71 15 adantr N 0 x + 1 x N !
72 71 nncnd N 0 x + 1 x N !
73 70 72 subcld N 0 x + 1 x n = 1 x log x n N log x N N ! k = 0 N log x k k ! x N !
74 73 abscld N 0 x + 1 x n = 1 x log x n N log x N N ! k = 0 N log x k k ! x N !
75 56 adantrr N 0 x + 1 x log x N x
76 75 recnd N 0 x + 1 x log x N x
77 76 abscld N 0 x + 1 x log x N x
78 ioorp 0 +∞ = +
79 78 eqcomi + = 0 +∞
80 nnuz = 1
81 1z 1
82 81 a1i N 0 x + 1 x 1
83 1red N 0 x + 1 x 1
84 1re 1
85 1nn0 1 0
86 84 85 nn0addge1i 1 1 + 1
87 86 a1i N 0 x + 1 x 1 1 + 1
88 0red N 0 x + 1 x 0
89 71 adantr N 0 x + 1 x y + N !
90 89 nnred N 0 x + 1 x y + N !
91 rpre y + y
92 91 adantl N 0 x + 1 x y + y
93 fzfid N 0 x + 1 x y + 0 N Fin
94 simprl N 0 x + 1 x x +
95 rpdivcl x + y + x y +
96 94 95 sylan N 0 x + 1 x y + x y +
97 96 relogcld N 0 x + 1 x y + log x y
98 reexpcl log x y k 0 log x y k
99 97 20 98 syl2an N 0 x + 1 x y + k 0 N log x y k
100 20 adantl N 0 x + 1 x y + k 0 N k 0
101 100 faccld N 0 x + 1 x y + k 0 N k !
102 99 101 nndivred N 0 x + 1 x y + k 0 N log x y k k !
103 93 102 fsumrecl N 0 x + 1 x y + k = 0 N log x y k k !
104 92 103 remulcld N 0 x + 1 x y + y k = 0 N log x y k k !
105 90 104 remulcld N 0 x + 1 x y + N ! y k = 0 N log x y k k !
106 simpll N 0 x + 1 x y + N 0
107 97 106 reexpcld N 0 x + 1 x y + log x y N
108 nnrp y y +
109 108 107 sylan2 N 0 x + 1 x y log x y N
110 reelprrecn
111 110 a1i N 0 x + 1 x
112 104 recnd N 0 x + 1 x y + y k = 0 N log x y k k !
113 107 89 nndivred N 0 x + 1 x y + log x y N N !
114 simpl N 0 x + 1 x N 0
115 advlogexp x + N 0 dy + y k = 0 N log x y k k ! d y = y + log x y N N !
116 94 114 115 syl2anc N 0 x + 1 x dy + y k = 0 N log x y k k ! d y = y + log x y N N !
117 111 112 113 116 72 dvmptcmul N 0 x + 1 x dy + N ! y k = 0 N log x y k k ! d y = y + N ! log x y N N !
118 107 recnd N 0 x + 1 x y + log x y N
119 72 adantr N 0 x + 1 x y + N !
120 71 nnne0d N 0 x + 1 x N ! 0
121 120 adantr N 0 x + 1 x y + N ! 0
122 118 119 121 divcan2d N 0 x + 1 x y + N ! log x y N N ! = log x y N
123 122 mpteq2dva N 0 x + 1 x y + N ! log x y N N ! = y + log x y N
124 117 123 eqtrd N 0 x + 1 x dy + N ! y k = 0 N log x y k k ! d y = y + log x y N
125 oveq2 y = n x y = x n
126 125 fveq2d y = n log x y = log x n
127 126 oveq1d y = n log x y N = log x n N
128 94 rpxrd N 0 x + 1 x x *
129 simp1rl N 0 x + 1 x y + n + 1 y y n n x x +
130 simp2r N 0 x + 1 x y + n + 1 y y n n x n +
131 129 130 rpdivcld N 0 x + 1 x y + n + 1 y y n n x x n +
132 131 relogcld N 0 x + 1 x y + n + 1 y y n n x log x n
133 simp2l N 0 x + 1 x y + n + 1 y y n n x y +
134 129 133 rpdivcld N 0 x + 1 x y + n + 1 y y n n x x y +
135 134 relogcld N 0 x + 1 x y + n + 1 y y n n x log x y
136 simp1l N 0 x + 1 x y + n + 1 y y n n x N 0
137 log1 log 1 = 0
138 130 rpcnd N 0 x + 1 x y + n + 1 y y n n x n
139 138 mulid2d N 0 x + 1 x y + n + 1 y y n n x 1 n = n
140 simp33 N 0 x + 1 x y + n + 1 y y n n x n x
141 139 140 eqbrtrd N 0 x + 1 x y + n + 1 y y n n x 1 n x
142 1red N 0 x + 1 x y + n + 1 y y n n x 1
143 129 rpred N 0 x + 1 x y + n + 1 y y n n x x
144 142 143 130 lemuldivd N 0 x + 1 x y + n + 1 y y n n x 1 n x 1 x n
145 141 144 mpbid N 0 x + 1 x y + n + 1 y y n n x 1 x n
146 logleb 1 + x n + 1 x n log 1 log x n
147 50 131 146 sylancr N 0 x + 1 x y + n + 1 y y n n x 1 x n log 1 log x n
148 145 147 mpbid N 0 x + 1 x y + n + 1 y y n n x log 1 log x n
149 137 148 eqbrtrrid N 0 x + 1 x y + n + 1 y y n n x 0 log x n
150 simp32 N 0 x + 1 x y + n + 1 y y n n x y n
151 133 130 129 lediv2d N 0 x + 1 x y + n + 1 y y n n x y n x n x y
152 150 151 mpbid N 0 x + 1 x y + n + 1 y y n n x x n x y
153 131 134 logled N 0 x + 1 x y + n + 1 y y n n x x n x y log x n log x y
154 152 153 mpbid N 0 x + 1 x y + n + 1 y y n n x log x n log x y
155 leexp1a log x n log x y N 0 0 log x n log x n log x y log x n N log x y N
156 132 135 136 149 154 155 syl32anc N 0 x + 1 x y + n + 1 y y n n x log x n N log x y N
157 eqid y + n = 1 y log x n N N ! y k = 0 N log x y k k ! = y + n = 1 y log x n N N ! y k = 0 N log x y k k !
158 96 3ad2antr1 N 0 x + 1 x y + 1 y y x x y +
159 158 relogcld N 0 x + 1 x y + 1 y y x log x y
160 simpll N 0 x + 1 x y + 1 y y x N 0
161 rpcn y + y
162 161 adantl N 0 x + 1 x y + y
163 162 3ad2antr1 N 0 x + 1 x y + 1 y y x y
164 163 mulid2d N 0 x + 1 x y + 1 y y x 1 y = y
165 simpr3 N 0 x + 1 x y + 1 y y x y x
166 164 165 eqbrtrd N 0 x + 1 x y + 1 y y x 1 y x
167 1red N 0 x + 1 x y + 1 y y x 1
168 94 rpred N 0 x + 1 x x
169 168 adantr N 0 x + 1 x y + 1 y y x x
170 simpr1 N 0 x + 1 x y + 1 y y x y +
171 167 169 170 lemuldivd N 0 x + 1 x y + 1 y y x 1 y x 1 x y
172 166 171 mpbid N 0 x + 1 x y + 1 y y x 1 x y
173 logleb 1 + x y + 1 x y log 1 log x y
174 50 158 173 sylancr N 0 x + 1 x y + 1 y y x 1 x y log 1 log x y
175 172 174 mpbid N 0 x + 1 x y + 1 y y x log 1 log x y
176 137 175 eqbrtrrid N 0 x + 1 x y + 1 y y x 0 log x y
177 159 160 176 expge0d N 0 x + 1 x y + 1 y y x 0 log x y N
178 50 a1i N 0 x + 1 x 1 +
179 1le1 1 1
180 179 a1i N 0 x + 1 x 1 1
181 simprr N 0 x + 1 x 1 x
182 168 leidd N 0 x + 1 x x x
183 79 80 82 83 87 88 105 107 109 124 127 128 156 157 177 178 94 180 181 182 dvfsumlem4 N 0 x + 1 x y + n = 1 y log x n N N ! y k = 0 N log x y k k ! x y + n = 1 y log x n N N ! y k = 0 N log x y k k ! 1 1 / y log x y N
184 fzfid N 0 x + 1 x 1 x Fin
185 94 4 5 syl2an N 0 x + 1 x n 1 x x n +
186 185 relogcld N 0 x + 1 x n 1 x log x n
187 simpll N 0 x + 1 x n 1 x N 0
188 186 187 reexpcld N 0 x + 1 x n 1 x log x n N
189 184 188 fsumrecl N 0 x + 1 x n = 1 x log x n N
190 189 recnd N 0 x + 1 x n = 1 x log x n N
191 94 rpcnd N 0 x + 1 x x
192 72 191 mulcld N 0 x + 1 x N ! x
193 11 ad2antrl N 0 x + 1 x log x
194 193 recnd N 0 x + 1 x log x
195 194 114 expcld N 0 x + 1 x log x N
196 fzfid N 0 x + 1 x 0 N Fin
197 193 20 21 syl2an N 0 x + 1 x k 0 N log x k
198 20 adantl N 0 x + 1 x k 0 N k 0
199 198 faccld N 0 x + 1 x k 0 N k !
200 197 199 nndivred N 0 x + 1 x k 0 N log x k k !
201 200 recnd N 0 x + 1 x k 0 N log x k k !
202 196 201 fsumcl N 0 x + 1 x k = 0 N log x k k !
203 72 202 mulcld N 0 x + 1 x N ! k = 0 N log x k k !
204 195 203 subcld N 0 x + 1 x log x N N ! k = 0 N log x k k !
205 190 192 204 sub32d N 0 x + 1 x n = 1 x log x n N - N ! x - log x N N ! k = 0 N log x k k ! = n = 1 x log x n N - log x N N ! k = 0 N log x k k ! - N ! x
206 eqidd N 0 x + 1 x y + n = 1 y log x n N N ! y k = 0 N log x y k k ! = y + n = 1 y log x n N N ! y k = 0 N log x y k k !
207 simpr N 0 x + 1 x y = x y = x
208 207 fveq2d N 0 x + 1 x y = x y = x
209 208 oveq2d N 0 x + 1 x y = x 1 y = 1 x
210 209 sumeq1d N 0 x + 1 x y = x n = 1 y log x n N = n = 1 x log x n N
211 oveq2 y = x x y = x x
212 65 ad2antrl N 0 x + 1 x x x 0
213 divid x x 0 x x = 1
214 212 213 syl N 0 x + 1 x x x = 1
215 211 214 sylan9eqr N 0 x + 1 x y = x x y = 1
216 215 adantr N 0 x + 1 x y = x k 0 N x y = 1
217 216 fveq2d N 0 x + 1 x y = x k 0 N log x y = log 1
218 217 137 eqtrdi N 0 x + 1 x y = x k 0 N log x y = 0
219 218 oveq1d N 0 x + 1 x y = x k 0 N log x y k = 0 k
220 219 oveq1d N 0 x + 1 x y = x k 0 N log x y k k ! = 0 k k !
221 220 sumeq2dv N 0 x + 1 x y = x k = 0 N log x y k k ! = k = 0 N 0 k k !
222 nn0uz 0 = 0
223 114 222 eleqtrdi N 0 x + 1 x N 0
224 eluzfz1 N 0 0 0 N
225 223 224 syl N 0 x + 1 x 0 0 N
226 225 adantr N 0 x + 1 x y = x 0 0 N
227 226 snssd N 0 x + 1 x y = x 0 0 N
228 elsni k 0 k = 0
229 228 adantl N 0 x + 1 x y = x k 0 k = 0
230 oveq2 k = 0 0 k = 0 0
231 0exp0e1 0 0 = 1
232 230 231 eqtrdi k = 0 0 k = 1
233 fveq2 k = 0 k ! = 0 !
234 fac0 0 ! = 1
235 233 234 eqtrdi k = 0 k ! = 1
236 232 235 oveq12d k = 0 0 k k ! = 1 1
237 1div1e1 1 1 = 1
238 236 237 eqtrdi k = 0 0 k k ! = 1
239 229 238 syl N 0 x + 1 x y = x k 0 0 k k ! = 1
240 ax-1cn 1
241 239 240 eqeltrdi N 0 x + 1 x y = x k 0 0 k k !
242 eldifi k 0 N 0 k 0 N
243 242 adantl N 0 x + 1 x y = x k 0 N 0 k 0 N
244 243 20 syl N 0 x + 1 x y = x k 0 N 0 k 0
245 eldifsni k 0 N 0 k 0
246 245 adantl N 0 x + 1 x y = x k 0 N 0 k 0
247 eldifsn k 0 0 k 0 k 0
248 244 246 247 sylanbrc N 0 x + 1 x y = x k 0 N 0 k 0 0
249 dfn2 = 0 0
250 248 249 eleqtrrdi N 0 x + 1 x y = x k 0 N 0 k
251 250 0expd N 0 x + 1 x y = x k 0 N 0 0 k = 0
252 251 oveq1d N 0 x + 1 x y = x k 0 N 0 0 k k ! = 0 k !
253 244 faccld N 0 x + 1 x y = x k 0 N 0 k !
254 253 nncnd N 0 x + 1 x y = x k 0 N 0 k !
255 253 nnne0d N 0 x + 1 x y = x k 0 N 0 k ! 0
256 254 255 div0d N 0 x + 1 x y = x k 0 N 0 0 k ! = 0
257 252 256 eqtrd N 0 x + 1 x y = x k 0 N 0 0 k k ! = 0
258 fzfid N 0 x + 1 x y = x 0 N Fin
259 227 241 257 258 fsumss N 0 x + 1 x y = x k 0 0 k k ! = k = 0 N 0 k k !
260 221 259 eqtr4d N 0 x + 1 x y = x k = 0 N log x y k k ! = k 0 0 k k !
261 0cn 0
262 238 sumsn 0 1 k 0 0 k k ! = 1
263 261 240 262 mp2an k 0 0 k k ! = 1
264 260 263 eqtrdi N 0 x + 1 x y = x k = 0 N log x y k k ! = 1
265 207 264 oveq12d N 0 x + 1 x y = x y k = 0 N log x y k k ! = x 1
266 191 mulid1d N 0 x + 1 x x 1 = x
267 266 adantr N 0 x + 1 x y = x x 1 = x
268 265 267 eqtrd N 0 x + 1 x y = x y k = 0 N log x y k k ! = x
269 268 oveq2d N 0 x + 1 x y = x N ! y k = 0 N log x y k k ! = N ! x
270 210 269 oveq12d N 0 x + 1 x y = x n = 1 y log x n N N ! y k = 0 N log x y k k ! = n = 1 x log x n N N ! x
271 ovexd N 0 x + 1 x n = 1 x log x n N N ! x V
272 206 270 94 271 fvmptd N 0 x + 1 x y + n = 1 y log x n N N ! y k = 0 N log x y k k ! x = n = 1 x log x n N N ! x
273 simpr N 0 x + 1 x y = 1 y = 1
274 273 fveq2d N 0 x + 1 x y = 1 y = 1
275 flid 1 1 = 1
276 81 275 ax-mp 1 = 1
277 274 276 eqtrdi N 0 x + 1 x y = 1 y = 1
278 277 oveq2d N 0 x + 1 x y = 1 1 y = 1 1
279 278 sumeq1d N 0 x + 1 x y = 1 n = 1 y log x n N = n = 1 1 log x n N
280 191 div1d N 0 x + 1 x x 1 = x
281 280 adantr N 0 x + 1 x y = 1 x 1 = x
282 281 fveq2d N 0 x + 1 x y = 1 log x 1 = log x
283 282 oveq1d N 0 x + 1 x y = 1 log x 1 N = log x N
284 195 adantr N 0 x + 1 x y = 1 log x N
285 283 284 eqeltrd N 0 x + 1 x y = 1 log x 1 N
286 oveq2 n = 1 x n = x 1
287 286 fveq2d n = 1 log x n = log x 1
288 287 oveq1d n = 1 log x n N = log x 1 N
289 288 fsum1 1 log x 1 N n = 1 1 log x n N = log x 1 N
290 81 285 289 sylancr N 0 x + 1 x y = 1 n = 1 1 log x n N = log x 1 N
291 279 290 283 3eqtrd N 0 x + 1 x y = 1 n = 1 y log x n N = log x N
292 273 oveq2d N 0 x + 1 x y = 1 x y = x 1
293 292 281 eqtrd N 0 x + 1 x y = 1 x y = x
294 293 fveq2d N 0 x + 1 x y = 1 log x y = log x
295 294 adantr N 0 x + 1 x y = 1 k 0 N log x y = log x
296 295 oveq1d N 0 x + 1 x y = 1 k 0 N log x y k = log x k
297 296 oveq1d N 0 x + 1 x y = 1 k 0 N log x y k k ! = log x k k !
298 297 sumeq2dv N 0 x + 1 x y = 1 k = 0 N log x y k k ! = k = 0 N log x k k !
299 273 298 oveq12d N 0 x + 1 x y = 1 y k = 0 N log x y k k ! = 1 k = 0 N log x k k !
300 202 adantr N 0 x + 1 x y = 1 k = 0 N log x k k !
301 300 mulid2d N 0 x + 1 x y = 1 1 k = 0 N log x k k ! = k = 0 N log x k k !
302 299 301 eqtrd N 0 x + 1 x y = 1 y k = 0 N log x y k k ! = k = 0 N log x k k !
303 302 oveq2d N 0 x + 1 x y = 1 N ! y k = 0 N log x y k k ! = N ! k = 0 N log x k k !
304 291 303 oveq12d N 0 x + 1 x y = 1 n = 1 y log x n N N ! y k = 0 N log x y k k ! = log x N N ! k = 0 N log x k k !
305 ovexd N 0 x + 1 x log x N N ! k = 0 N log x k k ! V
306 206 304 178 305 fvmptd N 0 x + 1 x y + n = 1 y log x n N N ! y k = 0 N log x y k k ! 1 = log x N N ! k = 0 N log x k k !
307 272 306 oveq12d N 0 x + 1 x y + n = 1 y log x n N N ! y k = 0 N log x y k k ! x y + n = 1 y log x n N N ! y k = 0 N log x y k k ! 1 = n = 1 x log x n N - N ! x - log x N N ! k = 0 N log x k k !
308 70 72 191 subdird N 0 x + 1 x n = 1 x log x n N log x N N ! k = 0 N log x k k ! x N ! x = n = 1 x log x n N log x N N ! k = 0 N log x k k ! x x N ! x
309 64 adantrr N 0 x + 1 x n = 1 x log x n N log x N N ! k = 0 N log x k k !
310 212 simprd N 0 x + 1 x x 0
311 309 191 310 divcan1d N 0 x + 1 x n = 1 x log x n N log x N N ! k = 0 N log x k k ! x x = n = 1 x log x n N log x N N ! k = 0 N log x k k !
312 311 oveq1d N 0 x + 1 x n = 1 x log x n N log x N N ! k = 0 N log x k k ! x x N ! x = n = 1 x log x n N - log x N N ! k = 0 N log x k k ! - N ! x
313 308 312 eqtrd N 0 x + 1 x n = 1 x log x n N log x N N ! k = 0 N log x k k ! x N ! x = n = 1 x log x n N - log x N N ! k = 0 N log x k k ! - N ! x
314 205 307 313 3eqtr4d N 0 x + 1 x y + n = 1 y log x n N N ! y k = 0 N log x y k k ! x y + n = 1 y log x n N N ! y k = 0 N log x y k k ! 1 = n = 1 x log x n N log x N N ! k = 0 N log x k k ! x N ! x
315 314 fveq2d N 0 x + 1 x y + n = 1 y log x n N N ! y k = 0 N log x y k k ! x y + n = 1 y log x n N N ! y k = 0 N log x y k k ! 1 = n = 1 x log x n N log x N N ! k = 0 N log x k k ! x N ! x
316 73 191 absmuld N 0 x + 1 x n = 1 x log x n N log x N N ! k = 0 N log x k k ! x N ! x = n = 1 x log x n N log x N N ! k = 0 N log x k k ! x N ! x
317 rprege0 x + x 0 x
318 317 ad2antrl N 0 x + 1 x x 0 x
319 absid x 0 x x = x
320 318 319 syl N 0 x + 1 x x = x
321 320 oveq2d N 0 x + 1 x n = 1 x log x n N log x N N ! k = 0 N log x k k ! x N ! x = n = 1 x log x n N log x N N ! k = 0 N log x k k ! x N ! x
322 315 316 321 3eqtrd N 0 x + 1 x y + n = 1 y log x n N N ! y k = 0 N log x y k k ! x y + n = 1 y log x n N N ! y k = 0 N log x y k k ! 1 = n = 1 x log x n N log x N N ! k = 0 N log x k k ! x N ! x
323 1cnd N 0 x + 1 x 1
324 294 oveq1d N 0 x + 1 x y = 1 log x y N = log x N
325 323 324 csbied N 0 x + 1 x 1 / y log x y N = log x N
326 183 322 325 3brtr3d N 0 x + 1 x n = 1 x log x n N log x N N ! k = 0 N log x k k ! x N ! x log x N
327 14 adantrr N 0 x + 1 x log x N
328 74 327 94 lemuldivd N 0 x + 1 x n = 1 x log x n N log x N N ! k = 0 N log x k k ! x N ! x log x N n = 1 x log x n N log x N N ! k = 0 N log x k k ! x N ! log x N x
329 326 328 mpbid N 0 x + 1 x n = 1 x log x n N log x N N ! k = 0 N log x k k ! x N ! log x N x
330 75 leabsd N 0 x + 1 x log x N x log x N x
331 74 75 77 329 330 letrd N 0 x + 1 x n = 1 x log x n N log x N N ! k = 0 N log x k k ! x N ! log x N x
332 57 adantrr N 0 x + 1 x log x N x
333 332 subid1d N 0 x + 1 x log x N x 0 = log x N x
334 333 fveq2d N 0 x + 1 x log x N x 0 = log x N x
335 331 334 breqtrrd N 0 x + 1 x n = 1 x log x n N log x N N ! k = 0 N log x k k ! x N ! log x N x 0
336 33 34 54 57 69 335 rlimsqzlem N 0 x + n = 1 x log x n N log x N N ! k = 0 N log x k k ! x N !
337 divsubdir log x N N ! k = 0 N log x k k ! x x 0 log x N N ! k = 0 N log x k k ! x = log x N x N ! k = 0 N log x k k ! x
338 59 62 66 337 syl3anc N 0 x + log x N N ! k = 0 N log x k k ! x = log x N x N ! k = 0 N log x k k ! x
339 338 mpteq2dva N 0 x + log x N N ! k = 0 N log x k k ! x = x + log x N x N ! k = 0 N log x k k ! x
340 rerpdivcl N ! k = 0 N log x k k ! x + N ! k = 0 N log x k k ! x
341 27 340 sylancom N 0 x + N ! k = 0 N log x k k ! x
342 divass N ! k = 0 N log x k k ! x x 0 N ! k = 0 N log x k k ! x = N ! k = 0 N log x k k ! x
343 60 61 66 342 syl3anc N 0 x + N ! k = 0 N log x k k ! x = N ! k = 0 N log x k k ! x
344 25 recnd N 0 x + k 0 N log x k k !
345 18 67 344 68 fsumdivc N 0 x + k = 0 N log x k k ! x = k = 0 N log x k k ! x
346 22 recnd N 0 x + k 0 N log x k
347 24 nnrpd N 0 x + k 0 N k ! +
348 347 rpcnne0d N 0 x + k 0 N k ! k ! 0
349 66 adantr N 0 x + k 0 N x x 0
350 divdiv32 log x k k ! k ! 0 x x 0 log x k k ! x = log x k x k !
351 346 348 349 350 syl3anc N 0 x + k 0 N log x k k ! x = log x k x k !
352 351 sumeq2dv N 0 x + k = 0 N log x k k ! x = k = 0 N log x k x k !
353 345 352 eqtrd N 0 x + k = 0 N log x k k ! x = k = 0 N log x k x k !
354 353 oveq2d N 0 x + N ! k = 0 N log x k k ! x = N ! k = 0 N log x k x k !
355 343 354 eqtrd N 0 x + N ! k = 0 N log x k k ! x = N ! k = 0 N log x k x k !
356 355 mpteq2dva N 0 x + N ! k = 0 N log x k k ! x = x + N ! k = 0 N log x k x k !
357 2 adantr N 0 x + k 0 N x +
358 22 357 rerpdivcld N 0 x + k 0 N log x k x
359 358 24 nndivred N 0 x + k 0 N log x k x k !
360 18 359 fsumrecl N 0 x + k = 0 N log x k x k !
361 rpssre +
362 rlimconst + N ! x + N ! N !
363 361 34 362 sylancr N 0 x + N ! N !
364 361 a1i N 0 +
365 fzfid N 0 0 N Fin
366 359 anasss N 0 x + k 0 N log x k x k !
367 358 an32s N 0 k 0 N x + log x k x
368 20 adantl N 0 k 0 N k 0
369 368 faccld N 0 k 0 N k !
370 369 nnred N 0 k 0 N k !
371 370 adantr N 0 k 0 N x + k !
372 368 53 syl N 0 k 0 N x + log x k x 0
373 369 nncnd N 0 k 0 N k !
374 rlimconst + k ! x + k ! k !
375 361 373 374 sylancr N 0 k 0 N x + k ! k !
376 369 nnne0d N 0 k 0 N k ! 0
377 376 adantr N 0 k 0 N x + k ! 0
378 367 371 372 375 376 377 rlimdiv N 0 k 0 N x + log x k x k ! 0 k !
379 373 376 div0d N 0 k 0 N 0 k ! = 0
380 378 379 breqtrd N 0 k 0 N x + log x k x k ! 0
381 364 365 366 380 fsumrlim N 0 x + k = 0 N log x k x k ! k = 0 N 0
382 fzfi 0 N Fin
383 382 olci 0 N 0 0 N Fin
384 sumz 0 N 0 0 N Fin k = 0 N 0 = 0
385 383 384 ax-mp k = 0 N 0 = 0
386 381 385 breqtrdi N 0 x + k = 0 N log x k x k ! 0
387 17 360 363 386 rlimmul N 0 x + N ! k = 0 N log x k x k ! N ! 0
388 34 mul01d N 0 N ! 0 = 0
389 387 388 breqtrd N 0 x + N ! k = 0 N log x k x k ! 0
390 356 389 eqbrtrd N 0 x + N ! k = 0 N log x k k ! x 0
391 56 341 54 390 rlimsub N 0 x + log x N x N ! k = 0 N log x k k ! x 0 0
392 0m0e0 0 0 = 0
393 391 392 breqtrdi N 0 x + log x N x N ! k = 0 N log x k k ! x 0
394 339 393 eqbrtrd N 0 x + log x N N ! k = 0 N log x k k ! x 0
395 30 32 336 394 rlimadd N 0 x + n = 1 x log x n N log x N N ! k = 0 N log x k k ! x + log x N N ! k = 0 N log x k k ! x N ! + 0
396 divsubdir n = 1 x log x n N log x N N ! k = 0 N log x k k ! x x 0 n = 1 x log x n N log x N N ! k = 0 N log x k k ! x = n = 1 x log x n N x log x N N ! k = 0 N log x k k ! x
397 58 63 66 396 syl3anc N 0 x + n = 1 x log x n N log x N N ! k = 0 N log x k k ! x = n = 1 x log x n N x log x N N ! k = 0 N log x k k ! x
398 397 oveq1d N 0 x + n = 1 x log x n N log x N N ! k = 0 N log x k k ! x + log x N N ! k = 0 N log x k k ! x = n = 1 x log x n N x - log x N N ! k = 0 N log x k k ! x + log x N N ! k = 0 N log x k k ! x
399 10 2 rerpdivcld N 0 x + n = 1 x log x n N x
400 399 recnd N 0 x + n = 1 x log x n N x
401 32 recnd N 0 x + log x N N ! k = 0 N log x k k ! x
402 400 401 npcand N 0 x + n = 1 x log x n N x - log x N N ! k = 0 N log x k k ! x + log x N N ! k = 0 N log x k k ! x = n = 1 x log x n N x
403 398 402 eqtrd N 0 x + n = 1 x log x n N log x N N ! k = 0 N log x k k ! x + log x N N ! k = 0 N log x k k ! x = n = 1 x log x n N x
404 403 mpteq2dva N 0 x + n = 1 x log x n N log x N N ! k = 0 N log x k k ! x + log x N N ! k = 0 N log x k k ! x = x + n = 1 x log x n N x
405 34 addid1d N 0 N ! + 0 = N !
406 395 404 405 3brtr3d N 0 x + n = 1 x log x n N x N !