Step |
Hyp |
Ref |
Expression |
1 |
|
elnn0 |
|
2 |
|
rpmulcl |
|
3 |
2
|
adantl |
|
4 |
|
fvi |
|
5 |
4
|
elv |
|
6 |
|
elfznn |
|
7 |
6
|
adantl |
|
8 |
7
|
nnrpd |
|
9 |
5 8
|
eqeltrid |
|
10 |
|
elnnuz |
|
11 |
10
|
biimpi |
|
12 |
|
relogmul |
|
13 |
12
|
adantl |
|
14 |
5
|
fveq2i |
|
15 |
14
|
a1i |
|
16 |
3 9 11 13 15
|
seqhomo |
|
17 |
|
facnn |
|
18 |
17
|
fveq2d |
|
19 |
|
eqidd |
|
20 |
|
relogcl |
|
21 |
8 20
|
syl |
|
22 |
21
|
recnd |
|
23 |
19 11 22
|
fsumser |
|
24 |
16 18 23
|
3eqtr4d |
|
25 |
|
log1 |
|
26 |
|
sum0 |
|
27 |
25 26
|
eqtr4i |
|
28 |
|
fveq2 |
|
29 |
|
fac0 |
|
30 |
28 29
|
eqtrdi |
|
31 |
30
|
fveq2d |
|
32 |
|
oveq2 |
|
33 |
|
fz10 |
|
34 |
32 33
|
eqtrdi |
|
35 |
34
|
sumeq1d |
|
36 |
27 31 35
|
3eqtr4a |
|
37 |
24 36
|
jaoi |
|
38 |
1 37
|
sylbi |
|