Step |
Hyp |
Ref |
Expression |
1 |
|
flge0nn0 |
|
2 |
|
logfac |
|
3 |
1 2
|
syl |
|
4 |
|
fzfid |
|
5 |
|
fzfid |
|
6 |
|
ssrab2 |
|
7 |
|
ssfi |
|
8 |
5 6 7
|
sylancl |
|
9 |
|
flcl |
|
10 |
9
|
adantr |
|
11 |
|
fznn |
|
12 |
10 11
|
syl |
|
13 |
12
|
anbi1d |
|
14 |
|
nnre |
|
15 |
14
|
ad2antlr |
|
16 |
|
elfznn |
|
17 |
16
|
ad2antrl |
|
18 |
17
|
nnred |
|
19 |
|
reflcl |
|
20 |
19
|
ad3antrrr |
|
21 |
|
simprr |
|
22 |
|
nnz |
|
23 |
22
|
ad2antlr |
|
24 |
|
dvdsle |
|
25 |
23 17 24
|
syl2anc |
|
26 |
21 25
|
mpd |
|
27 |
|
elfzle2 |
|
28 |
27
|
ad2antrl |
|
29 |
15 18 20 26 28
|
letrd |
|
30 |
29
|
expl |
|
31 |
30
|
pm4.71rd |
|
32 |
|
an12 |
|
33 |
|
an21 |
|
34 |
31 32 33
|
3bitr4g |
|
35 |
13 34
|
bitr4d |
|
36 |
|
breq2 |
|
37 |
36
|
elrab |
|
38 |
37
|
anbi2i |
|
39 |
|
breq1 |
|
40 |
39
|
elrab |
|
41 |
40
|
anbi2i |
|
42 |
35 38 41
|
3bitr4g |
|
43 |
|
elfznn |
|
44 |
43
|
adantl |
|
45 |
|
vmacl |
|
46 |
44 45
|
syl |
|
47 |
46
|
recnd |
|
48 |
47
|
adantrr |
|
49 |
4 4 8 42 48
|
fsumcom2 |
|
50 |
|
fsumconst |
|
51 |
8 47 50
|
syl2anc |
|
52 |
|
fzfid |
|
53 |
|
simpll |
|
54 |
|
eqid |
|
55 |
53 44 54
|
dvdsflf1o |
|
56 |
52 55
|
hasheqf1od |
|
57 |
|
simpl |
|
58 |
|
nndivre |
|
59 |
57 43 58
|
syl2an |
|
60 |
|
nngt0 |
|
61 |
14 60
|
jca |
|
62 |
43 61
|
syl |
|
63 |
|
divge0 |
|
64 |
62 63
|
sylan2 |
|
65 |
|
flge0nn0 |
|
66 |
59 64 65
|
syl2anc |
|
67 |
|
hashfz1 |
|
68 |
66 67
|
syl |
|
69 |
56 68
|
eqtr3d |
|
70 |
69
|
oveq1d |
|
71 |
59
|
flcld |
|
72 |
71
|
zcnd |
|
73 |
72 47
|
mulcomd |
|
74 |
51 70 73
|
3eqtrd |
|
75 |
74
|
sumeq2dv |
|
76 |
16
|
adantl |
|
77 |
|
vmasum |
|
78 |
76 77
|
syl |
|
79 |
78
|
sumeq2dv |
|
80 |
49 75 79
|
3eqtr3d |
|
81 |
3 80
|
eqtr4d |
|