Step |
Hyp |
Ref |
Expression |
1 |
|
simpl |
|
2 |
1
|
rprege0d |
|
3 |
|
flge0nn0 |
|
4 |
2 3
|
syl |
|
5 |
4
|
faccld |
|
6 |
5
|
nnrpd |
|
7 |
|
relogcl |
|
8 |
6 7
|
syl |
|
9 |
|
rpre |
|
10 |
9
|
adantr |
|
11 |
|
relogcl |
|
12 |
11
|
adantr |
|
13 |
|
peano2rem |
|
14 |
12 13
|
syl |
|
15 |
10 14
|
remulcld |
|
16 |
8 15
|
resubcld |
|
17 |
16
|
recnd |
|
18 |
17
|
abscld |
|
19 |
|
peano2rem |
|
20 |
18 19
|
syl |
|
21 |
|
ax-1cn |
|
22 |
|
subcl |
|
23 |
17 21 22
|
sylancl |
|
24 |
23
|
abscld |
|
25 |
|
abs1 |
|
26 |
25
|
oveq2i |
|
27 |
|
abs2dif |
|
28 |
17 21 27
|
sylancl |
|
29 |
26 28
|
eqbrtrrid |
|
30 |
|
fveq2 |
|
31 |
30
|
oveq2d |
|
32 |
31
|
sumeq1d |
|
33 |
|
id |
|
34 |
|
fveq2 |
|
35 |
34
|
oveq1d |
|
36 |
33 35
|
oveq12d |
|
37 |
32 36
|
oveq12d |
|
38 |
|
eqid |
|
39 |
|
ovex |
|
40 |
37 38 39
|
fvmpt3i |
|
41 |
40
|
adantr |
|
42 |
|
logfac |
|
43 |
4 42
|
syl |
|
44 |
43
|
oveq1d |
|
45 |
41 44
|
eqtr4d |
|
46 |
|
1rp |
|
47 |
|
fveq2 |
|
48 |
|
1z |
|
49 |
|
flid |
|
50 |
48 49
|
ax-mp |
|
51 |
47 50
|
eqtrdi |
|
52 |
51
|
oveq2d |
|
53 |
52
|
sumeq1d |
|
54 |
|
0cn |
|
55 |
|
fveq2 |
|
56 |
|
log1 |
|
57 |
55 56
|
eqtrdi |
|
58 |
57
|
fsum1 |
|
59 |
48 54 58
|
mp2an |
|
60 |
53 59
|
eqtrdi |
|
61 |
|
id |
|
62 |
|
fveq2 |
|
63 |
62 56
|
eqtrdi |
|
64 |
63
|
oveq1d |
|
65 |
61 64
|
oveq12d |
|
66 |
54 21
|
subcli |
|
67 |
66
|
mulid2i |
|
68 |
65 67
|
eqtrdi |
|
69 |
60 68
|
oveq12d |
|
70 |
|
nncan |
|
71 |
54 21 70
|
mp2an |
|
72 |
69 71
|
eqtrdi |
|
73 |
72 38 39
|
fvmpt3i |
|
74 |
46 73
|
mp1i |
|
75 |
45 74
|
oveq12d |
|
76 |
75
|
fveq2d |
|
77 |
|
ioorp |
|
78 |
77
|
eqcomi |
|
79 |
|
nnuz |
|
80 |
48
|
a1i |
|
81 |
|
1re |
|
82 |
81
|
a1i |
|
83 |
|
pnfxr |
|
84 |
83
|
a1i |
|
85 |
|
1nn0 |
|
86 |
81 85
|
nn0addge1i |
|
87 |
86
|
a1i |
|
88 |
|
0red |
|
89 |
|
rpre |
|
90 |
89
|
adantl |
|
91 |
|
relogcl |
|
92 |
91
|
adantl |
|
93 |
|
peano2rem |
|
94 |
92 93
|
syl |
|
95 |
90 94
|
remulcld |
|
96 |
|
nnrp |
|
97 |
96 92
|
sylan2 |
|
98 |
|
advlog |
|
99 |
98
|
a1i |
|
100 |
|
fveq2 |
|
101 |
|
simp32 |
|
102 |
|
logleb |
|
103 |
102
|
3ad2ant2 |
|
104 |
101 103
|
mpbid |
|
105 |
|
simprr |
|
106 |
|
simprl |
|
107 |
|
logleb |
|
108 |
46 106 107
|
sylancr |
|
109 |
105 108
|
mpbid |
|
110 |
56 109
|
eqbrtrrid |
|
111 |
46
|
a1i |
|
112 |
|
1le1 |
|
113 |
112
|
a1i |
|
114 |
|
simpr |
|
115 |
10
|
rexrd |
|
116 |
|
pnfge |
|
117 |
115 116
|
syl |
|
118 |
78 79 80 82 84 87 88 95 92 97 99 100 104 38 110 111 1 113 114 117 34
|
dvfsum2 |
|
119 |
76 118
|
eqbrtrrd |
|
120 |
20 24 12 29 119
|
letrd |
|
121 |
18 82 12
|
lesubaddd |
|
122 |
120 121
|
mpbid |
|