Step |
Hyp |
Ref |
Expression |
1 |
|
rpcn |
|
2 |
1
|
times2d |
|
3 |
2
|
oveq2d |
|
4 |
|
relogcl |
|
5 |
4
|
recnd |
|
6 |
|
2cnd |
|
7 |
1 5 6
|
subdid |
|
8 |
|
rpre |
|
9 |
8 4
|
remulcld |
|
10 |
9
|
recnd |
|
11 |
10 1 1
|
subsub4d |
|
12 |
3 7 11
|
3eqtr4d |
|
13 |
9 8
|
resubcld |
|
14 |
|
fzfid |
|
15 |
|
fzfid |
|
16 |
|
elfznn |
|
17 |
16
|
adantl |
|
18 |
17
|
nnrecred |
|
19 |
15 18
|
fsumrecl |
|
20 |
14 19
|
fsumrecl |
|
21 |
|
rprege0 |
|
22 |
|
flge0nn0 |
|
23 |
21 22
|
syl |
|
24 |
23
|
faccld |
|
25 |
24
|
nnrpd |
|
26 |
25
|
relogcld |
|
27 |
26 8
|
readdcld |
|
28 |
|
elfznn |
|
29 |
28
|
adantl |
|
30 |
29
|
nnrecred |
|
31 |
14 30
|
fsumrecl |
|
32 |
8 31
|
remulcld |
|
33 |
|
reflcl |
|
34 |
8 33
|
syl |
|
35 |
32 34
|
resubcld |
|
36 |
|
harmoniclbnd |
|
37 |
|
rpregt0 |
|
38 |
|
lemul2 |
|
39 |
4 31 37 38
|
syl3anc |
|
40 |
36 39
|
mpbid |
|
41 |
|
flle |
|
42 |
8 41
|
syl |
|
43 |
9 34 32 8 40 42
|
le2subd |
|
44 |
28
|
nnrecred |
|
45 |
|
remulcl |
|
46 |
8 44 45
|
syl2an |
|
47 |
|
peano2rem |
|
48 |
46 47
|
syl |
|
49 |
|
fzfid |
|
50 |
30
|
adantr |
|
51 |
49 50
|
fsumrecl |
|
52 |
8
|
adantr |
|
53 |
52 33
|
syl |
|
54 |
|
peano2re |
|
55 |
53 54
|
syl |
|
56 |
29
|
nnred |
|
57 |
|
fllep1 |
|
58 |
8 57
|
syl |
|
59 |
58
|
adantr |
|
60 |
52 55 56 59
|
lesub1dd |
|
61 |
52 56
|
resubcld |
|
62 |
55 56
|
resubcld |
|
63 |
29
|
nnrpd |
|
64 |
63
|
rpreccld |
|
65 |
61 62 64
|
lemul1d |
|
66 |
60 65
|
mpbid |
|
67 |
1
|
adantr |
|
68 |
29
|
nncnd |
|
69 |
30
|
recnd |
|
70 |
67 68 69
|
subdird |
|
71 |
29
|
nnne0d |
|
72 |
68 71
|
recidd |
|
73 |
72
|
oveq2d |
|
74 |
70 73
|
eqtr2d |
|
75 |
|
fsumconst |
|
76 |
49 69 75
|
syl2anc |
|
77 |
|
elfzuz3 |
|
78 |
77
|
adantl |
|
79 |
|
hashfz |
|
80 |
78 79
|
syl |
|
81 |
34
|
recnd |
|
82 |
81
|
adantr |
|
83 |
|
1cnd |
|
84 |
82 83 68
|
addsubd |
|
85 |
80 84
|
eqtr4d |
|
86 |
85
|
oveq1d |
|
87 |
76 86
|
eqtrd |
|
88 |
66 74 87
|
3brtr4d |
|
89 |
14 48 51 88
|
fsumle |
|
90 |
14 1 69
|
fsummulc2 |
|
91 |
|
ax-1cn |
|
92 |
|
fsumconst |
|
93 |
14 91 92
|
sylancl |
|
94 |
|
hashfz1 |
|
95 |
23 94
|
syl |
|
96 |
95
|
oveq1d |
|
97 |
81
|
mulid1d |
|
98 |
93 96 97
|
3eqtrrd |
|
99 |
90 98
|
oveq12d |
|
100 |
46
|
recnd |
|
101 |
14 100 83
|
fsumsub |
|
102 |
99 101
|
eqtr4d |
|
103 |
|
eqid |
|
104 |
103
|
uztrn2 |
|
105 |
104
|
adantl |
|
106 |
105
|
biantrurd |
|
107 |
|
uzss |
|
108 |
107
|
ad2antll |
|
109 |
108
|
sseld |
|
110 |
109
|
pm4.71rd |
|
111 |
106 110
|
bitr3d |
|
112 |
111
|
pm5.32da |
|
113 |
|
ancom |
|
114 |
|
an4 |
|
115 |
112 113 114
|
3bitr4g |
|
116 |
|
elfzuzb |
|
117 |
|
elfzuzb |
|
118 |
116 117
|
anbi12i |
|
119 |
|
elfzuzb |
|
120 |
|
elfzuzb |
|
121 |
119 120
|
anbi12i |
|
122 |
115 118 121
|
3bitr4g |
|
123 |
18
|
recnd |
|
124 |
123
|
anasss |
|
125 |
14 14 15 122 124
|
fsumcom2 |
|
126 |
89 102 125
|
3brtr4d |
|
127 |
13 35 20 43 126
|
letrd |
|
128 |
26 34
|
readdcld |
|
129 |
|
elfznn |
|
130 |
129
|
adantl |
|
131 |
130
|
nnrpd |
|
132 |
131
|
relogcld |
|
133 |
|
peano2re |
|
134 |
132 133
|
syl |
|
135 |
|
nnz |
|
136 |
|
flid |
|
137 |
135 136
|
syl |
|
138 |
137
|
oveq2d |
|
139 |
138
|
sumeq1d |
|
140 |
|
nnre |
|
141 |
|
nnge1 |
|
142 |
|
harmonicubnd |
|
143 |
140 141 142
|
syl2anc |
|
144 |
139 143
|
eqbrtrrd |
|
145 |
130 144
|
syl |
|
146 |
14 19 134 145
|
fsumle |
|
147 |
132
|
recnd |
|
148 |
|
1cnd |
|
149 |
14 147 148
|
fsumadd |
|
150 |
|
logfac |
|
151 |
23 150
|
syl |
|
152 |
|
fsumconst |
|
153 |
14 91 152
|
sylancl |
|
154 |
153 96 97
|
3eqtrrd |
|
155 |
151 154
|
oveq12d |
|
156 |
149 155
|
eqtr4d |
|
157 |
146 156
|
breqtrd |
|
158 |
34 8 26 42
|
leadd2dd |
|
159 |
20 128 27 157 158
|
letrd |
|
160 |
13 20 27 127 159
|
letrd |
|
161 |
13 8 26
|
lesubaddd |
|
162 |
160 161
|
mpbird |
|
163 |
12 162
|
eqbrtrd |
|