Step |
Hyp |
Ref |
Expression |
1 |
|
1red |
|
2 |
|
1cnd |
|
3 |
|
relogcl |
|
4 |
3
|
adantl |
|
5 |
4
|
recnd |
|
6 |
|
1cnd |
|
7 |
|
rpcnne0 |
|
8 |
7
|
adantl |
|
9 |
|
divdir |
|
10 |
5 6 8 9
|
syl3anc |
|
11 |
10
|
mpteq2dva |
|
12 |
|
simpr |
|
13 |
4 12
|
rerpdivcld |
|
14 |
|
rpreccl |
|
15 |
14
|
adantl |
|
16 |
15
|
rpred |
|
17 |
8
|
simpld |
|
18 |
17
|
cxp1d |
|
19 |
18
|
oveq2d |
|
20 |
19
|
mpteq2dva |
|
21 |
|
1rp |
|
22 |
|
cxploglim |
|
23 |
21 22
|
mp1i |
|
24 |
20 23
|
eqbrtrrd |
|
25 |
|
ax-1cn |
|
26 |
|
divrcnv |
|
27 |
25 26
|
mp1i |
|
28 |
13 16 24 27
|
rlimadd |
|
29 |
11 28
|
eqbrtrd |
|
30 |
|
00id |
|
31 |
29 30
|
breqtrdi |
|
32 |
|
peano2re |
|
33 |
4 32
|
syl |
|
34 |
33 12
|
rerpdivcld |
|
35 |
34
|
recnd |
|
36 |
|
rprege0 |
|
37 |
36
|
adantl |
|
38 |
|
flge0nn0 |
|
39 |
|
faccl |
|
40 |
37 38 39
|
3syl |
|
41 |
40
|
nnrpd |
|
42 |
|
relogcl |
|
43 |
41 42
|
syl |
|
44 |
43 12
|
rerpdivcld |
|
45 |
44
|
recnd |
|
46 |
5 45
|
subcld |
|
47 |
|
logfacbnd3 |
|
48 |
47
|
adantl |
|
49 |
43
|
recnd |
|
50 |
49
|
adantrr |
|
51 |
7
|
ad2antrl |
|
52 |
51
|
simpld |
|
53 |
5
|
adantrr |
|
54 |
|
subcl |
|
55 |
53 25 54
|
sylancl |
|
56 |
52 55
|
mulcld |
|
57 |
50 56
|
subcld |
|
58 |
57
|
abscld |
|
59 |
4
|
adantrr |
|
60 |
59 32
|
syl |
|
61 |
|
rpregt0 |
|
62 |
61
|
ad2antrl |
|
63 |
|
lediv1 |
|
64 |
58 60 62 63
|
syl3anc |
|
65 |
48 64
|
mpbid |
|
66 |
51
|
simprd |
|
67 |
55 52 66
|
divcan3d |
|
68 |
67
|
oveq1d |
|
69 |
|
divsubdir |
|
70 |
56 50 51 69
|
syl3anc |
|
71 |
45
|
adantrr |
|
72 |
|
1cnd |
|
73 |
53 71 72
|
sub32d |
|
74 |
68 70 73
|
3eqtr4rd |
|
75 |
74
|
fveq2d |
|
76 |
56 50
|
subcld |
|
77 |
76 52 66
|
absdivd |
|
78 |
56 50
|
abssubd |
|
79 |
36
|
ad2antrl |
|
80 |
|
absid |
|
81 |
79 80
|
syl |
|
82 |
78 81
|
oveq12d |
|
83 |
75 77 82
|
3eqtrd |
|
84 |
35
|
adantrr |
|
85 |
84
|
subid1d |
|
86 |
85
|
fveq2d |
|
87 |
|
log1 |
|
88 |
|
simprr |
|
89 |
12
|
adantrr |
|
90 |
|
logleb |
|
91 |
21 89 90
|
sylancr |
|
92 |
88 91
|
mpbid |
|
93 |
87 92
|
eqbrtrrid |
|
94 |
59 93
|
ge0p1rpd |
|
95 |
94 89
|
rpdivcld |
|
96 |
|
rprege0 |
|
97 |
|
absid |
|
98 |
95 96 97
|
3syl |
|
99 |
86 98
|
eqtrd |
|
100 |
65 83 99
|
3brtr4d |
|
101 |
1 2 31 35 46 100
|
rlimsqzlem |
|
102 |
101
|
mptru |
|