Metamath Proof Explorer


Theorem logfacubnd

Description: A simple upper bound on the logarithm of a factorial. (Contributed by Mario Carneiro, 16-Apr-2016)

Ref Expression
Assertion logfacubnd A + 1 A log A ! A log A

Proof

Step Hyp Ref Expression
1 rpre A + A
2 flge1nn A 1 A A
3 1 2 sylan A + 1 A A
4 3 nnnn0d A + 1 A A 0
5 4 faccld A + 1 A A !
6 5 nnrpd A + 1 A A ! +
7 6 relogcld A + 1 A log A !
8 1 adantr A + 1 A A
9 reflcl A A
10 8 9 syl A + 1 A A
11 3 nnrpd A + 1 A A +
12 11 relogcld A + 1 A log A
13 10 12 remulcld A + 1 A A log A
14 relogcl A + log A
15 14 adantr A + 1 A log A
16 8 15 remulcld A + 1 A A log A
17 facubnd A 0 A ! A A
18 4 17 syl A + 1 A A ! A A
19 3 4 nnexpcld A + 1 A A A
20 19 nnrpd A + 1 A A A +
21 6 20 logled A + 1 A A ! A A log A ! log A A
22 18 21 mpbid A + 1 A log A ! log A A
23 3 nnzd A + 1 A A
24 relogexp A + A log A A = A log A
25 11 23 24 syl2anc A + 1 A log A A = A log A
26 22 25 breqtrd A + 1 A log A ! A log A
27 flle A A A
28 8 27 syl A + 1 A A A
29 simpl A + 1 A A +
30 11 29 logled A + 1 A A A log A log A
31 28 30 mpbid A + 1 A log A log A
32 11 rprege0d A + 1 A A 0 A
33 log1 log 1 = 0
34 3 nnge1d A + 1 A 1 A
35 1rp 1 +
36 logleb 1 + A + 1 A log 1 log A
37 35 11 36 sylancr A + 1 A 1 A log 1 log A
38 34 37 mpbid A + 1 A log 1 log A
39 33 38 eqbrtrrid A + 1 A 0 log A
40 12 39 jca A + 1 A log A 0 log A
41 lemul12a A 0 A A log A 0 log A log A A A log A log A A log A A log A
42 32 8 40 15 41 syl22anc A + 1 A A A log A log A A log A A log A
43 28 31 42 mp2and A + 1 A A log A A log A
44 7 13 16 26 43 letrd A + 1 A log A ! A log A