Metamath Proof Explorer


Theorem logimclad

Description: The imaginary part of the logarithm is in ( -upi (,] pi ) . Alternate form of logimcld . (Contributed by David Moews, 28-Feb-2017)

Ref Expression
Hypotheses logimcld.1 φ X
logimcld.2 φ X 0
Assertion logimclad φ log X π π

Proof

Step Hyp Ref Expression
1 logimcld.1 φ X
2 logimcld.2 φ X 0
3 1 2 logcld φ log X
4 3 imcld φ log X
5 1 2 logimcld φ π < log X log X π
6 5 simpld φ π < log X
7 5 simprd φ log X π
8 pire π
9 8 renegcli π
10 9 rexri π *
11 elioc2 π * π log X π π log X π < log X log X π
12 10 8 11 mp2an log X π π log X π < log X log X π
13 4 6 7 12 syl3anbrc φ log X π π