Metamath Proof Explorer


Theorem logimcld

Description: The imaginary part of the logarithm is in ( -upi (,] pi ) . Deduction form of logimcl . Compare logimclad . (Contributed by David Moews, 28-Feb-2017)

Ref Expression
Hypotheses logimcld.1 φ X
logimcld.2 φ X 0
Assertion logimcld φ π < log X log X π

Proof

Step Hyp Ref Expression
1 logimcld.1 φ X
2 logimcld.2 φ X 0
3 logimcl X X 0 π < log X log X π
4 1 2 3 syl2anc φ π < log X log X π