Database
BASIC REAL AND COMPLEX FUNCTIONS
Basic trigonometry
The natural logarithm on complex numbers
logimcld
Metamath Proof Explorer
Description: The imaginary part of the logarithm is in ( -upi (,] pi ) .
Deduction form of logimcl . Compare logimclad . (Contributed by David Moews , 28-Feb-2017)
Ref
Expression
Hypotheses
logimcld.1
⊢ φ → X ∈ ℂ
logimcld.2
⊢ φ → X ≠ 0
Assertion
logimcld
⊢ φ → − π < ℑ ⁡ log ⁡ X ∧ ℑ ⁡ log ⁡ X ≤ π
Proof
Step
Hyp
Ref
Expression
1
logimcld.1
⊢ φ → X ∈ ℂ
2
logimcld.2
⊢ φ → X ≠ 0
3
logimcl
⊢ X ∈ ℂ ∧ X ≠ 0 → − π < ℑ ⁡ log ⁡ X ∧ ℑ ⁡ log ⁡ X ≤ π
4
1 2 3
syl2anc
⊢ φ → − π < ℑ ⁡ log ⁡ X ∧ ℑ ⁡ log ⁡ X ≤ π