Metamath Proof Explorer


Theorem logleb

Description: Natural logarithm preserves <_ . (Contributed by Stefan O'Rear, 19-Sep-2014)

Ref Expression
Assertion logleb A + B + A B log A log B

Proof

Step Hyp Ref Expression
1 logltb B + A + B < A log B < log A
2 1 ancoms A + B + B < A log B < log A
3 2 notbid A + B + ¬ B < A ¬ log B < log A
4 rpre A + A
5 rpre B + B
6 lenlt A B A B ¬ B < A
7 4 5 6 syl2an A + B + A B ¬ B < A
8 relogcl A + log A
9 relogcl B + log B
10 lenlt log A log B log A log B ¬ log B < log A
11 8 9 10 syl2an A + B + log A log B ¬ log B < log A
12 3 7 11 3bitr4d A + B + A B log A log B