Database
BASIC REAL AND COMPLEX FUNCTIONS
Basic trigonometry
The natural logarithm on complex numbers
logleb
Next ⟩
rplogcl
Metamath Proof Explorer
Ascii
Unicode
Theorem
logleb
Description:
Natural logarithm preserves
<_
.
(Contributed by
Stefan O'Rear
, 19-Sep-2014)
Ref
Expression
Assertion
logleb
⊢
A
∈
ℝ
+
∧
B
∈
ℝ
+
→
A
≤
B
↔
log
⁡
A
≤
log
⁡
B
Proof
Step
Hyp
Ref
Expression
1
logltb
⊢
B
∈
ℝ
+
∧
A
∈
ℝ
+
→
B
<
A
↔
log
⁡
B
<
log
⁡
A
2
1
ancoms
⊢
A
∈
ℝ
+
∧
B
∈
ℝ
+
→
B
<
A
↔
log
⁡
B
<
log
⁡
A
3
2
notbid
⊢
A
∈
ℝ
+
∧
B
∈
ℝ
+
→
¬
B
<
A
↔
¬
log
⁡
B
<
log
⁡
A
4
rpre
⊢
A
∈
ℝ
+
→
A
∈
ℝ
5
rpre
⊢
B
∈
ℝ
+
→
B
∈
ℝ
6
lenlt
⊢
A
∈
ℝ
∧
B
∈
ℝ
→
A
≤
B
↔
¬
B
<
A
7
4
5
6
syl2an
⊢
A
∈
ℝ
+
∧
B
∈
ℝ
+
→
A
≤
B
↔
¬
B
<
A
8
relogcl
⊢
A
∈
ℝ
+
→
log
⁡
A
∈
ℝ
9
relogcl
⊢
B
∈
ℝ
+
→
log
⁡
B
∈
ℝ
10
lenlt
⊢
log
⁡
A
∈
ℝ
∧
log
⁡
B
∈
ℝ
→
log
⁡
A
≤
log
⁡
B
↔
¬
log
⁡
B
<
log
⁡
A
11
8
9
10
syl2an
⊢
A
∈
ℝ
+
∧
B
∈
ℝ
+
→
log
⁡
A
≤
log
⁡
B
↔
¬
log
⁡
B
<
log
⁡
A
12
3
7
11
3bitr4d
⊢
A
∈
ℝ
+
∧
B
∈
ℝ
+
→
A
≤
B
↔
log
⁡
A
≤
log
⁡
B