Metamath Proof Explorer


Theorem logled

Description: Natural logarithm preserves <_ . (Contributed by Mario Carneiro, 29-May-2016)

Ref Expression
Hypotheses relogcld.1 φ A +
relogmuld.2 φ B +
Assertion logled φ A B log A log B

Proof

Step Hyp Ref Expression
1 relogcld.1 φ A +
2 relogmuld.2 φ B +
3 logleb A + B + A B log A log B
4 1 2 3 syl2anc φ A B log A log B