Metamath Proof Explorer


Theorem loglesqrt

Description: An upper bound on the logarithm. (Contributed by Mario Carneiro, 2-May-2016) (Proof shortened by AV, 2-Aug-2021)

Ref Expression
Assertion loglesqrt A 0 A log A + 1 A

Proof

Step Hyp Ref Expression
1 0re 0
2 1 a1i A 0 A 0
3 simpl A 0 A A
4 elicc2 0 A x 0 A x 0 x x A
5 1 3 4 sylancr A 0 A x 0 A x 0 x x A
6 5 biimpa A 0 A x 0 A x 0 x x A
7 6 simp1d A 0 A x 0 A x
8 6 simp2d A 0 A x 0 A 0 x
9 7 8 ge0p1rpd A 0 A x 0 A x + 1 +
10 9 fvresd A 0 A x 0 A log + x + 1 = log x + 1
11 10 mpteq2dva A 0 A x 0 A log + x + 1 = x 0 A log x + 1
12 eqid TopOpen fld = TopOpen fld
13 12 cnfldtopon TopOpen fld TopOn
14 7 ex A 0 A x 0 A x
15 14 ssrdv A 0 A 0 A
16 ax-resscn
17 15 16 sstrdi A 0 A 0 A
18 resttopon TopOpen fld TopOn 0 A TopOpen fld 𝑡 0 A TopOn 0 A
19 13 17 18 sylancr A 0 A TopOpen fld 𝑡 0 A TopOn 0 A
20 9 fmpttd A 0 A x 0 A x + 1 : 0 A +
21 rpssre +
22 21 16 sstri +
23 12 addcn + TopOpen fld × t TopOpen fld Cn TopOpen fld
24 23 a1i A 0 A + TopOpen fld × t TopOpen fld Cn TopOpen fld
25 ssid
26 cncfmptid 0 A x 0 A x : 0 A cn
27 17 25 26 sylancl A 0 A x 0 A x : 0 A cn
28 1cnd A 0 A 1
29 25 a1i A 0 A
30 cncfmptc 1 0 A x 0 A 1 : 0 A cn
31 28 17 29 30 syl3anc A 0 A x 0 A 1 : 0 A cn
32 12 24 27 31 cncfmpt2f A 0 A x 0 A x + 1 : 0 A cn
33 cncffvrn + x 0 A x + 1 : 0 A cn x 0 A x + 1 : 0 A cn + x 0 A x + 1 : 0 A +
34 22 32 33 sylancr A 0 A x 0 A x + 1 : 0 A cn + x 0 A x + 1 : 0 A +
35 20 34 mpbird A 0 A x 0 A x + 1 : 0 A cn +
36 eqid TopOpen fld 𝑡 0 A = TopOpen fld 𝑡 0 A
37 eqid TopOpen fld 𝑡 + = TopOpen fld 𝑡 +
38 12 36 37 cncfcn 0 A + 0 A cn + = TopOpen fld 𝑡 0 A Cn TopOpen fld 𝑡 +
39 17 22 38 sylancl A 0 A 0 A cn + = TopOpen fld 𝑡 0 A Cn TopOpen fld 𝑡 +
40 35 39 eleqtrd A 0 A x 0 A x + 1 TopOpen fld 𝑡 0 A Cn TopOpen fld 𝑡 +
41 relogcn log + : + cn
42 eqid TopOpen fld 𝑡 = TopOpen fld 𝑡
43 12 37 42 cncfcn + + cn = TopOpen fld 𝑡 + Cn TopOpen fld 𝑡
44 22 16 43 mp2an + cn = TopOpen fld 𝑡 + Cn TopOpen fld 𝑡
45 41 44 eleqtri log + TopOpen fld 𝑡 + Cn TopOpen fld 𝑡
46 45 a1i A 0 A log + TopOpen fld 𝑡 + Cn TopOpen fld 𝑡
47 19 40 46 cnmpt11f A 0 A x 0 A log + x + 1 TopOpen fld 𝑡 0 A Cn TopOpen fld 𝑡
48 12 36 42 cncfcn 0 A 0 A cn = TopOpen fld 𝑡 0 A Cn TopOpen fld 𝑡
49 17 16 48 sylancl A 0 A 0 A cn = TopOpen fld 𝑡 0 A Cn TopOpen fld 𝑡
50 47 49 eleqtrrd A 0 A x 0 A log + x + 1 : 0 A cn
51 11 50 eqeltrrd A 0 A x 0 A log x + 1 : 0 A cn
52 reelprrecn
53 52 a1i A 0 A
54 simpr A 0 A x + x +
55 1rp 1 +
56 rpaddcl x + 1 + x + 1 +
57 54 55 56 sylancl A 0 A x + x + 1 +
58 57 relogcld A 0 A x + log x + 1
59 58 recnd A 0 A x + log x + 1
60 57 rpreccld A 0 A x + 1 x + 1 +
61 1cnd A 0 A x + 1
62 relogcl y + log y
63 62 adantl A 0 A y + log y
64 63 recnd A 0 A y + log y
65 rpreccl y + 1 y +
66 65 adantl A 0 A y + 1 y +
67 peano2re x x + 1
68 67 adantl A 0 A x x + 1
69 68 recnd A 0 A x x + 1
70 1cnd A 0 A x 1
71 16 a1i A 0 A
72 71 sselda A 0 A x x
73 53 dvmptid A 0 A dx x d x = x 1
74 0cnd A 0 A x 0
75 53 28 dvmptc A 0 A dx 1 d x = x 0
76 53 72 70 73 70 74 75 dvmptadd A 0 A dx x + 1 d x = x 1 + 0
77 1p0e1 1 + 0 = 1
78 77 mpteq2i x 1 + 0 = x 1
79 76 78 eqtrdi A 0 A dx x + 1 d x = x 1
80 21 a1i A 0 A +
81 12 tgioo2 topGen ran . = TopOpen fld 𝑡
82 ioorp 0 +∞ = +
83 iooretop 0 +∞ topGen ran .
84 82 83 eqeltrri + topGen ran .
85 84 a1i A 0 A + topGen ran .
86 53 69 70 79 80 81 12 85 dvmptres A 0 A dx + x + 1 d x = x + 1
87 relogf1o log + : + 1-1 onto
88 f1of log + : + 1-1 onto log + : +
89 87 88 mp1i A 0 A log + : +
90 89 feqmptd A 0 A log + = y + log + y
91 fvres y + log + y = log y
92 91 mpteq2ia y + log + y = y + log y
93 90 92 eqtrdi A 0 A log + = y + log y
94 93 oveq2d A 0 A D log + = dy + log y d y
95 dvrelog D log + = y + 1 y
96 94 95 eqtr3di A 0 A dy + log y d y = y + 1 y
97 fveq2 y = x + 1 log y = log x + 1
98 oveq2 y = x + 1 1 y = 1 x + 1
99 53 53 57 61 64 66 86 96 97 98 dvmptco A 0 A dx + log x + 1 d x = x + 1 x + 1 1
100 60 rpcnd A 0 A x + 1 x + 1
101 100 mulid1d A 0 A x + 1 x + 1 1 = 1 x + 1
102 101 mpteq2dva A 0 A x + 1 x + 1 1 = x + 1 x + 1
103 99 102 eqtrd A 0 A dx + log x + 1 d x = x + 1 x + 1
104 ioossicc 0 A 0 A
105 104 sseli x 0 A x 0 A
106 105 7 sylan2 A 0 A x 0 A x
107 eliooord x 0 A 0 < x x < A
108 107 simpld x 0 A 0 < x
109 108 adantl A 0 A x 0 A 0 < x
110 106 109 elrpd A 0 A x 0 A x +
111 110 ex A 0 A x 0 A x +
112 111 ssrdv A 0 A 0 A +
113 iooretop 0 A topGen ran .
114 113 a1i A 0 A 0 A topGen ran .
115 53 59 60 103 112 81 12 114 dvmptres A 0 A dx 0 A log x + 1 d x = x 0 A 1 x + 1
116 elrege0 x 0 +∞ x 0 x
117 7 8 116 sylanbrc A 0 A x 0 A x 0 +∞
118 117 ex A 0 A x 0 A x 0 +∞
119 118 ssrdv A 0 A 0 A 0 +∞
120 119 resabs1d A 0 A 0 +∞ 0 A = 0 A
121 sqrtf :
122 121 a1i A 0 A :
123 122 17 feqresmpt A 0 A 0 A = x 0 A x
124 120 123 eqtrd A 0 A 0 +∞ 0 A = x 0 A x
125 resqrtcn 0 +∞ : 0 +∞ cn
126 rescncf 0 A 0 +∞ 0 +∞ : 0 +∞ cn 0 +∞ 0 A : 0 A cn
127 119 125 126 mpisyl A 0 A 0 +∞ 0 A : 0 A cn
128 124 127 eqeltrrd A 0 A x 0 A x : 0 A cn
129 rpcn x + x
130 129 adantl A 0 A x + x
131 130 sqrtcld A 0 A x + x
132 2rp 2 +
133 rpsqrtcl x + x +
134 133 adantl A 0 A x + x +
135 rpmulcl 2 + x + 2 x +
136 132 134 135 sylancr A 0 A x + 2 x +
137 136 rpreccld A 0 A x + 1 2 x +
138 dvsqrt dx + x d x = x + 1 2 x
139 138 a1i A 0 A dx + x d x = x + 1 2 x
140 53 131 137 139 112 81 12 114 dvmptres A 0 A dx 0 A x d x = x 0 A 1 2 x
141 134 rpred A 0 A x + x
142 1re 1
143 resubcl x 1 x 1
144 141 142 143 sylancl A 0 A x + x 1
145 144 sqge0d A 0 A x + 0 x 1 2
146 130 sqsqrtd A 0 A x + x 2 = x
147 146 oveq1d A 0 A x + x 2 2 x = x 2 x
148 147 oveq1d A 0 A x + x 2 - 2 x + 1 = x - 2 x + 1
149 binom2sub1 x x 1 2 = x 2 - 2 x + 1
150 131 149 syl A 0 A x + x 1 2 = x 2 - 2 x + 1
151 136 rpcnd A 0 A x + 2 x
152 130 61 151 addsubd A 0 A x + x + 1 - 2 x = x - 2 x + 1
153 148 150 152 3eqtr4d A 0 A x + x 1 2 = x + 1 - 2 x
154 145 153 breqtrd A 0 A x + 0 x + 1 - 2 x
155 57 rpred A 0 A x + x + 1
156 136 rpred A 0 A x + 2 x
157 155 156 subge0d A 0 A x + 0 x + 1 - 2 x 2 x x + 1
158 154 157 mpbid A 0 A x + 2 x x + 1
159 136 57 lerecd A 0 A x + 2 x x + 1 1 x + 1 1 2 x
160 158 159 mpbid A 0 A x + 1 x + 1 1 2 x
161 110 160 syldan A 0 A x 0 A 1 x + 1 1 2 x
162 rexr A A *
163 0xr 0 *
164 lbicc2 0 * A * 0 A 0 0 A
165 163 164 mp3an1 A * 0 A 0 0 A
166 162 165 sylan A 0 A 0 0 A
167 ubicc2 0 * A * 0 A A 0 A
168 163 167 mp3an1 A * 0 A A 0 A
169 162 168 sylan A 0 A A 0 A
170 simpr A 0 A 0 A
171 fv0p1e1 x = 0 log x + 1 = log 1
172 log1 log 1 = 0
173 171 172 eqtrdi x = 0 log x + 1 = 0
174 fveq2 x = 0 x = 0
175 sqrt0 0 = 0
176 174 175 eqtrdi x = 0 x = 0
177 fvoveq1 x = A log x + 1 = log A + 1
178 fveq2 x = A x = A
179 2 3 51 115 128 140 161 166 169 170 173 176 177 178 dvle A 0 A log A + 1 0 A 0
180 ge0p1rp A 0 A A + 1 +
181 180 relogcld A 0 A log A + 1
182 resqrtcl A 0 A A
183 181 182 2 lesub1d A 0 A log A + 1 A log A + 1 0 A 0
184 179 183 mpbird A 0 A log A + 1 A