Metamath Proof Explorer


Theorem logm1

Description: The natural logarithm of negative 1 . (Contributed by Paul Chapman, 21-Apr-2008) (Revised by Mario Carneiro, 13-May-2014)

Ref Expression
Assertion logm1 log -1 = i π

Proof

Step Hyp Ref Expression
1 1rp 1 +
2 logneg 1 + log -1 = log 1 + i π
3 1 2 ax-mp log -1 = log 1 + i π
4 log1 log 1 = 0
5 4 oveq1i log 1 + i π = 0 + i π
6 ax-icn i
7 picn π
8 6 7 mulcli i π
9 8 addid2i 0 + i π = i π
10 3 5 9 3eqtri log -1 = i π