Metamath Proof Explorer


Theorem logmul2

Description: Generalization of relogmul to a complex left argument. (Contributed by Mario Carneiro, 9-Jul-2017)

Ref Expression
Assertion logmul2 A A 0 B + log A B = log A + log B

Proof

Step Hyp Ref Expression
1 logcl A A 0 log A
2 1 3adant3 A A 0 B + log A
3 relogcl B + log B
4 3 3ad2ant3 A A 0 B + log B
5 4 recnd A A 0 B + log B
6 efadd log A log B e log A + log B = e log A e log B
7 2 5 6 syl2anc A A 0 B + e log A + log B = e log A e log B
8 eflog A A 0 e log A = A
9 8 3adant3 A A 0 B + e log A = A
10 reeflog B + e log B = B
11 10 3ad2ant3 A A 0 B + e log B = B
12 9 11 oveq12d A A 0 B + e log A e log B = A B
13 7 12 eqtrd A A 0 B + e log A + log B = A B
14 13 fveq2d A A 0 B + log e log A + log B = log A B
15 logrncl A A 0 log A ran log
16 15 3adant3 A A 0 B + log A ran log
17 logrnaddcl log A ran log log B log A + log B ran log
18 16 4 17 syl2anc A A 0 B + log A + log B ran log
19 logef log A + log B ran log log e log A + log B = log A + log B
20 18 19 syl A A 0 B + log e log A + log B = log A + log B
21 14 20 eqtr3d A A 0 B + log A B = log A + log B