Database
BASIC REAL AND COMPLEX FUNCTIONS
Basic trigonometry
The natural logarithm on complex numbers
logrncl
Next ⟩
logcl
Metamath Proof Explorer
Ascii
Unicode
Theorem
logrncl
Description:
Closure of the natural logarithm function.
(Contributed by
Paul Chapman
, 21-Apr-2008)
Ref
Expression
Assertion
logrncl
⊢
A
∈
ℂ
∧
A
≠
0
→
log
⁡
A
∈
ran
⁡
log
Proof
Step
Hyp
Ref
Expression
1
eldifsn
⊢
A
∈
ℂ
∖
0
↔
A
∈
ℂ
∧
A
≠
0
2
logf1o
⊢
log
:
ℂ
∖
0
⟶
1-1 onto
ran
⁡
log
3
f1of
⊢
log
:
ℂ
∖
0
⟶
1-1 onto
ran
⁡
log
→
log
:
ℂ
∖
0
⟶
ran
⁡
log
4
2
3
ax-mp
⊢
log
:
ℂ
∖
0
⟶
ran
⁡
log
5
4
ffvelrni
⊢
A
∈
ℂ
∖
0
→
log
⁡
A
∈
ran
⁡
log
6
1
5
sylbir
⊢
A
∈
ℂ
∧
A
≠
0
→
log
⁡
A
∈
ran
⁡
log