Database
BASIC REAL AND COMPLEX FUNCTIONS
Basic trigonometry
The natural logarithm on complex numbers
logsqrt
Next ⟩
cxp0d
Metamath Proof Explorer
Ascii
Unicode
Theorem
logsqrt
Description:
Logarithm of a square root.
(Contributed by
Mario Carneiro
, 5-May-2016)
Ref
Expression
Assertion
logsqrt
⊢
A
∈
ℝ
+
→
log
⁡
A
=
log
⁡
A
2
Proof
Step
Hyp
Ref
Expression
1
relogcl
⊢
A
∈
ℝ
+
→
log
⁡
A
∈
ℝ
2
1
recnd
⊢
A
∈
ℝ
+
→
log
⁡
A
∈
ℂ
3
2cn
⊢
2
∈
ℂ
4
2ne0
⊢
2
≠
0
5
divrec2
⊢
log
⁡
A
∈
ℂ
∧
2
∈
ℂ
∧
2
≠
0
→
log
⁡
A
2
=
1
2
⁢
log
⁡
A
6
3
4
5
mp3an23
⊢
log
⁡
A
∈
ℂ
→
log
⁡
A
2
=
1
2
⁢
log
⁡
A
7
2
6
syl
⊢
A
∈
ℝ
+
→
log
⁡
A
2
=
1
2
⁢
log
⁡
A
8
halfre
⊢
1
2
∈
ℝ
9
logcxp
⊢
A
∈
ℝ
+
∧
1
2
∈
ℝ
→
log
⁡
A
1
2
=
1
2
⁢
log
⁡
A
10
8
9
mpan2
⊢
A
∈
ℝ
+
→
log
⁡
A
1
2
=
1
2
⁢
log
⁡
A
11
rpcn
⊢
A
∈
ℝ
+
→
A
∈
ℂ
12
cxpsqrt
⊢
A
∈
ℂ
→
A
1
2
=
A
13
11
12
syl
⊢
A
∈
ℝ
+
→
A
1
2
=
A
14
13
fveq2d
⊢
A
∈
ℝ
+
→
log
⁡
A
1
2
=
log
⁡
A
15
7
10
14
3eqtr2rd
⊢
A
∈
ℝ
+
→
log
⁡
A
=
log
⁡
A
2