Metamath Proof Explorer


Theorem logsqrt

Description: Logarithm of a square root. (Contributed by Mario Carneiro, 5-May-2016)

Ref Expression
Assertion logsqrt A + log A = log A 2

Proof

Step Hyp Ref Expression
1 relogcl A + log A
2 1 recnd A + log A
3 2cn 2
4 2ne0 2 0
5 divrec2 log A 2 2 0 log A 2 = 1 2 log A
6 3 4 5 mp3an23 log A log A 2 = 1 2 log A
7 2 6 syl A + log A 2 = 1 2 log A
8 halfre 1 2
9 logcxp A + 1 2 log A 1 2 = 1 2 log A
10 8 9 mpan2 A + log A 1 2 = 1 2 log A
11 rpcn A + A
12 cxpsqrt A A 1 2 = A
13 11 12 syl A + A 1 2 = A
14 13 fveq2d A + log A 1 2 = log A
15 7 10 14 3eqtr2rd A + log A = log A 2