| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvdsfi |
|
| 2 |
|
ssrab2 |
|
| 3 |
|
simpr |
|
| 4 |
2 3
|
sselid |
|
| 5 |
|
vmacl |
|
| 6 |
4 5
|
syl |
|
| 7 |
|
dvdsdivcl |
|
| 8 |
2 7
|
sselid |
|
| 9 |
|
vmacl |
|
| 10 |
8 9
|
syl |
|
| 11 |
6 10
|
remulcld |
|
| 12 |
1 11
|
fsumrecl |
|
| 13 |
|
vmacl |
|
| 14 |
|
nnrp |
|
| 15 |
14
|
relogcld |
|
| 16 |
13 15
|
remulcld |
|
| 17 |
12 16
|
readdcld |
|
| 18 |
17
|
recnd |
|
| 19 |
18
|
adantl |
|
| 20 |
19
|
fmpttd |
|
| 21 |
|
ssrab2 |
|
| 22 |
|
simpr |
|
| 23 |
21 22
|
sselid |
|
| 24 |
|
breq2 |
|
| 25 |
24
|
rabbidv |
|
| 26 |
|
fvoveq1 |
|
| 27 |
26
|
oveq2d |
|
| 28 |
27
|
adantr |
|
| 29 |
25 28
|
sumeq12dv |
|
| 30 |
|
fveq2 |
|
| 31 |
|
fveq2 |
|
| 32 |
30 31
|
oveq12d |
|
| 33 |
29 32
|
oveq12d |
|
| 34 |
|
eqid |
|
| 35 |
|
ovex |
|
| 36 |
33 34 35
|
fvmpt3i |
|
| 37 |
23 36
|
syl |
|
| 38 |
37
|
sumeq2dv |
|
| 39 |
|
logsqvma |
|
| 40 |
39
|
adantl |
|
| 41 |
38 40
|
eqtr2d |
|
| 42 |
41
|
mpteq2dva |
|
| 43 |
20 42
|
muinv |
|
| 44 |
43
|
fveq1d |
|
| 45 |
|
breq2 |
|
| 46 |
45
|
rabbidv |
|
| 47 |
|
fvoveq1 |
|
| 48 |
47
|
oveq2d |
|
| 49 |
48
|
adantr |
|
| 50 |
46 49
|
sumeq12dv |
|
| 51 |
|
fveq2 |
|
| 52 |
|
fveq2 |
|
| 53 |
51 52
|
oveq12d |
|
| 54 |
50 53
|
oveq12d |
|
| 55 |
54 34 35
|
fvmpt3i |
|
| 56 |
|
fveq2 |
|
| 57 |
|
oveq2 |
|
| 58 |
57
|
fveq2d |
|
| 59 |
58
|
oveq1d |
|
| 60 |
56 59
|
oveq12d |
|
| 61 |
60
|
cbvsumv |
|
| 62 |
|
breq2 |
|
| 63 |
62
|
rabbidv |
|
| 64 |
|
fvoveq1 |
|
| 65 |
64
|
oveq1d |
|
| 66 |
65
|
oveq2d |
|
| 67 |
66
|
adantr |
|
| 68 |
63 67
|
sumeq12dv |
|
| 69 |
61 68
|
eqtrid |
|
| 70 |
|
ssrab2 |
|
| 71 |
|
dvdsdivcl |
|
| 72 |
70 71
|
sselid |
|
| 73 |
|
fveq2 |
|
| 74 |
73
|
oveq1d |
|
| 75 |
|
eqid |
|
| 76 |
|
ovex |
|
| 77 |
74 75 76
|
fvmpt3i |
|
| 78 |
72 77
|
syl |
|
| 79 |
78
|
oveq2d |
|
| 80 |
79
|
sumeq2dv |
|
| 81 |
80
|
mpteq2ia |
|
| 82 |
|
sumex |
|
| 83 |
69 81 82
|
fvmpt3i |
|
| 84 |
44 55 83
|
3eqtr3rd |
|