Metamath Proof Explorer


Theorem logtayllem

Description: Lemma for logtayl . (Contributed by Mario Carneiro, 1-Apr-2015)

Ref Expression
Assertion logtayllem A A < 1 seq 0 + n 0 if n = 0 0 1 n A n dom

Proof

Step Hyp Ref Expression
1 nn0uz 0 = 0
2 1nn0 1 0
3 2 a1i A A < 1 1 0
4 oveq2 n = k A n = A k
5 eqid n 0 A n = n 0 A n
6 ovex A k V
7 4 5 6 fvmpt k 0 n 0 A n k = A k
8 7 adantl A A < 1 k 0 n 0 A n k = A k
9 abscl A A
10 9 adantr A A < 1 A
11 reexpcl A k 0 A k
12 10 11 sylan A A < 1 k 0 A k
13 8 12 eqeltrd A A < 1 k 0 n 0 A n k
14 eqeq1 n = k n = 0 k = 0
15 oveq2 n = k 1 n = 1 k
16 14 15 ifbieq2d n = k if n = 0 0 1 n = if k = 0 0 1 k
17 oveq2 n = k A n = A k
18 16 17 oveq12d n = k if n = 0 0 1 n A n = if k = 0 0 1 k A k
19 eqid n 0 if n = 0 0 1 n A n = n 0 if n = 0 0 1 n A n
20 ovex if k = 0 0 1 k A k V
21 18 19 20 fvmpt k 0 n 0 if n = 0 0 1 n A n k = if k = 0 0 1 k A k
22 21 adantl A A < 1 k 0 n 0 if n = 0 0 1 n A n k = if k = 0 0 1 k A k
23 0cnd A A < 1 k 0 k = 0 0
24 nn0cn k 0 k
25 24 adantl A A < 1 k 0 k
26 neqne ¬ k = 0 k 0
27 reccl k k 0 1 k
28 25 26 27 syl2an A A < 1 k 0 ¬ k = 0 1 k
29 23 28 ifclda A A < 1 k 0 if k = 0 0 1 k
30 expcl A k 0 A k
31 30 adantlr A A < 1 k 0 A k
32 29 31 mulcld A A < 1 k 0 if k = 0 0 1 k A k
33 22 32 eqeltrd A A < 1 k 0 n 0 if n = 0 0 1 n A n k
34 10 recnd A A < 1 A
35 absidm A A = A
36 35 adantr A A < 1 A = A
37 simpr A A < 1 A < 1
38 36 37 eqbrtrd A A < 1 A < 1
39 34 38 8 geolim A A < 1 seq 0 + n 0 A n 1 1 A
40 seqex seq 0 + n 0 A n V
41 ovex 1 1 A V
42 40 41 breldm seq 0 + n 0 A n 1 1 A seq 0 + n 0 A n dom
43 39 42 syl A A < 1 seq 0 + n 0 A n dom
44 1red A A < 1 1
45 elnnuz k k 1
46 nnrecre k 1 k
47 46 adantl A A < 1 k 1 k
48 47 recnd A A < 1 k 1 k
49 nnnn0 k k 0
50 49 31 sylan2 A A < 1 k A k
51 48 50 absmuld A A < 1 k 1 k A k = 1 k A k
52 nnrp k k +
53 52 adantl A A < 1 k k +
54 53 rpreccld A A < 1 k 1 k +
55 54 rpge0d A A < 1 k 0 1 k
56 47 55 absidd A A < 1 k 1 k = 1 k
57 simpl A A < 1 A
58 absexp A k 0 A k = A k
59 57 49 58 syl2an A A < 1 k A k = A k
60 56 59 oveq12d A A < 1 k 1 k A k = 1 k A k
61 51 60 eqtrd A A < 1 k 1 k A k = 1 k A k
62 1red A A < 1 k 1
63 49 12 sylan2 A A < 1 k A k
64 50 absge0d A A < 1 k 0 A k
65 64 59 breqtrd A A < 1 k 0 A k
66 nnge1 k 1 k
67 66 adantl A A < 1 k 1 k
68 0lt1 0 < 1
69 68 a1i A A < 1 k 0 < 1
70 nnre k k
71 70 adantl A A < 1 k k
72 nngt0 k 0 < k
73 72 adantl A A < 1 k 0 < k
74 lerec 1 0 < 1 k 0 < k 1 k 1 k 1 1
75 62 69 71 73 74 syl22anc A A < 1 k 1 k 1 k 1 1
76 67 75 mpbid A A < 1 k 1 k 1 1
77 1div1e1 1 1 = 1
78 76 77 breqtrdi A A < 1 k 1 k 1
79 47 62 63 65 78 lemul1ad A A < 1 k 1 k A k 1 A k
80 61 79 eqbrtrd A A < 1 k 1 k A k 1 A k
81 49 22 sylan2 A A < 1 k n 0 if n = 0 0 1 n A n k = if k = 0 0 1 k A k
82 nnne0 k k 0
83 82 adantl A A < 1 k k 0
84 83 neneqd A A < 1 k ¬ k = 0
85 84 iffalsed A A < 1 k if k = 0 0 1 k = 1 k
86 85 oveq1d A A < 1 k if k = 0 0 1 k A k = 1 k A k
87 81 86 eqtrd A A < 1 k n 0 if n = 0 0 1 n A n k = 1 k A k
88 87 fveq2d A A < 1 k n 0 if n = 0 0 1 n A n k = 1 k A k
89 49 8 sylan2 A A < 1 k n 0 A n k = A k
90 89 oveq2d A A < 1 k 1 n 0 A n k = 1 A k
91 80 88 90 3brtr4d A A < 1 k n 0 if n = 0 0 1 n A n k 1 n 0 A n k
92 45 91 sylan2br A A < 1 k 1 n 0 if n = 0 0 1 n A n k 1 n 0 A n k
93 1 3 13 33 43 44 92 cvgcmpce A A < 1 seq 0 + n 0 if n = 0 0 1 n A n dom