Step |
Hyp |
Ref |
Expression |
1 |
|
nn0uz |
|
2 |
|
1nn0 |
|
3 |
2
|
a1i |
|
4 |
|
oveq2 |
|
5 |
|
eqid |
|
6 |
|
ovex |
|
7 |
4 5 6
|
fvmpt |
|
8 |
7
|
adantl |
|
9 |
|
abscl |
|
10 |
9
|
adantr |
|
11 |
|
reexpcl |
|
12 |
10 11
|
sylan |
|
13 |
8 12
|
eqeltrd |
|
14 |
|
eqeq1 |
|
15 |
|
oveq2 |
|
16 |
14 15
|
ifbieq2d |
|
17 |
|
oveq2 |
|
18 |
16 17
|
oveq12d |
|
19 |
|
eqid |
|
20 |
|
ovex |
|
21 |
18 19 20
|
fvmpt |
|
22 |
21
|
adantl |
|
23 |
|
0cnd |
|
24 |
|
nn0cn |
|
25 |
24
|
adantl |
|
26 |
|
neqne |
|
27 |
|
reccl |
|
28 |
25 26 27
|
syl2an |
|
29 |
23 28
|
ifclda |
|
30 |
|
expcl |
|
31 |
30
|
adantlr |
|
32 |
29 31
|
mulcld |
|
33 |
22 32
|
eqeltrd |
|
34 |
10
|
recnd |
|
35 |
|
absidm |
|
36 |
35
|
adantr |
|
37 |
|
simpr |
|
38 |
36 37
|
eqbrtrd |
|
39 |
34 38 8
|
geolim |
|
40 |
|
seqex |
|
41 |
|
ovex |
|
42 |
40 41
|
breldm |
|
43 |
39 42
|
syl |
|
44 |
|
1red |
|
45 |
|
elnnuz |
|
46 |
|
nnrecre |
|
47 |
46
|
adantl |
|
48 |
47
|
recnd |
|
49 |
|
nnnn0 |
|
50 |
49 31
|
sylan2 |
|
51 |
48 50
|
absmuld |
|
52 |
|
nnrp |
|
53 |
52
|
adantl |
|
54 |
53
|
rpreccld |
|
55 |
54
|
rpge0d |
|
56 |
47 55
|
absidd |
|
57 |
|
simpl |
|
58 |
|
absexp |
|
59 |
57 49 58
|
syl2an |
|
60 |
56 59
|
oveq12d |
|
61 |
51 60
|
eqtrd |
|
62 |
|
1red |
|
63 |
49 12
|
sylan2 |
|
64 |
50
|
absge0d |
|
65 |
64 59
|
breqtrd |
|
66 |
|
nnge1 |
|
67 |
66
|
adantl |
|
68 |
|
0lt1 |
|
69 |
68
|
a1i |
|
70 |
|
nnre |
|
71 |
70
|
adantl |
|
72 |
|
nngt0 |
|
73 |
72
|
adantl |
|
74 |
|
lerec |
|
75 |
62 69 71 73 74
|
syl22anc |
|
76 |
67 75
|
mpbid |
|
77 |
|
1div1e1 |
|
78 |
76 77
|
breqtrdi |
|
79 |
47 62 63 65 78
|
lemul1ad |
|
80 |
61 79
|
eqbrtrd |
|
81 |
49 22
|
sylan2 |
|
82 |
|
nnne0 |
|
83 |
82
|
adantl |
|
84 |
83
|
neneqd |
|
85 |
84
|
iffalsed |
|
86 |
85
|
oveq1d |
|
87 |
81 86
|
eqtrd |
|
88 |
87
|
fveq2d |
|
89 |
49 8
|
sylan2 |
|
90 |
89
|
oveq2d |
|
91 |
80 88 90
|
3brtr4d |
|
92 |
45 91
|
sylan2br |
|
93 |
1 3 13 33 43 44 92
|
cvgcmpce |
|