Metamath Proof Explorer


Theorem logtaylsum

Description: The Taylor series for -u log ( 1 - A ) , as an infinite sum. (Contributed by Mario Carneiro, 31-Mar-2015)

Ref Expression
Assertion logtaylsum A A < 1 k A k k = log 1 A

Proof

Step Hyp Ref Expression
1 nnuz = 1
2 1zzd A A < 1 1
3 oveq2 n = k A n = A k
4 id n = k n = k
5 3 4 oveq12d n = k A n n = A k k
6 eqid n A n n = n A n n
7 ovex A k k V
8 5 6 7 fvmpt k n A n n k = A k k
9 8 adantl A A < 1 k n A n n k = A k k
10 simpl A A < 1 A
11 nnnn0 k k 0
12 expcl A k 0 A k
13 10 11 12 syl2an A A < 1 k A k
14 nncn k k
15 14 adantl A A < 1 k k
16 nnne0 k k 0
17 16 adantl A A < 1 k k 0
18 13 15 17 divcld A A < 1 k A k k
19 logtayl A A < 1 seq 1 + n A n n log 1 A
20 1 2 9 18 19 isumclim A A < 1 k A k k = log 1 A