Metamath Proof Explorer


Theorem lpbl

Description: Every ball around a limit point P of a subset S includes a member of S (even if P e/ S ). (Contributed by NM, 9-Nov-2007) (Revised by Mario Carneiro, 23-Dec-2013)

Ref Expression
Hypothesis mopni.1 J = MetOpen D
Assertion lpbl D ∞Met X S X P limPt J S R + x S x P ball D R

Proof

Step Hyp Ref Expression
1 mopni.1 J = MetOpen D
2 ineq1 x = P ball D R x S P = P ball D R S P
3 2 neeq1d x = P ball D R x S P P ball D R S P
4 simpl3 D ∞Met X S X P limPt J S R + P limPt J S
5 simpl1 D ∞Met X S X P limPt J S R + D ∞Met X
6 1 mopntop D ∞Met X J Top
7 5 6 syl D ∞Met X S X P limPt J S R + J Top
8 simpl2 D ∞Met X S X P limPt J S R + S X
9 1 mopnuni D ∞Met X X = J
10 5 9 syl D ∞Met X S X P limPt J S R + X = J
11 8 10 sseqtrd D ∞Met X S X P limPt J S R + S J
12 eqid J = J
13 12 lpss J Top S J limPt J S J
14 7 11 13 syl2anc D ∞Met X S X P limPt J S R + limPt J S J
15 14 4 sseldd D ∞Met X S X P limPt J S R + P J
16 12 islp2 J Top S J P J P limPt J S x nei J P x S P
17 7 11 15 16 syl3anc D ∞Met X S X P limPt J S R + P limPt J S x nei J P x S P
18 4 17 mpbid D ∞Met X S X P limPt J S R + x nei J P x S P
19 15 10 eleqtrrd D ∞Met X S X P limPt J S R + P X
20 simpr D ∞Met X S X P limPt J S R + R +
21 1 blnei D ∞Met X P X R + P ball D R nei J P
22 5 19 20 21 syl3anc D ∞Met X S X P limPt J S R + P ball D R nei J P
23 3 18 22 rspcdva D ∞Met X S X P limPt J S R + P ball D R S P
24 elin x P ball D R S P x P ball D R x S P
25 eldifi x S P x S
26 25 anim2i x P ball D R x S P x P ball D R x S
27 26 ancomd x P ball D R x S P x S x P ball D R
28 24 27 sylbi x P ball D R S P x S x P ball D R
29 28 eximi x x P ball D R S P x x S x P ball D R
30 n0 P ball D R S P x x P ball D R S P
31 df-rex x S x P ball D R x x S x P ball D R
32 29 30 31 3imtr4i P ball D R S P x S x P ball D R
33 23 32 syl D ∞Met X S X P limPt J S R + x S x P ball D R