Metamath Proof Explorer


Theorem lpdifsn

Description: P is a limit point of S iff it is a limit point of S \ { P } . (Contributed by Mario Carneiro, 25-Dec-2016)

Ref Expression
Hypothesis lpfval.1 X = J
Assertion lpdifsn J Top S X P limPt J S P limPt J S P

Proof

Step Hyp Ref Expression
1 lpfval.1 X = J
2 1 islp J Top S X P limPt J S P cls J S P
3 ssdifss S X S P X
4 1 islp J Top S P X P limPt J S P P cls J S P P
5 3 4 sylan2 J Top S X P limPt J S P P cls J S P P
6 difabs S P P = S P
7 6 fveq2i cls J S P P = cls J S P
8 7 eleq2i P cls J S P P P cls J S P
9 5 8 bitrdi J Top S X P limPt J S P P cls J S P
10 2 9 bitr4d J Top S X P limPt J S P limPt J S P