Database
BASIC ALGEBRAIC STRUCTURES
Ideals
Principal ideal rings. Divisibility in the integers
lpi0
Next ⟩
lpi1
Metamath Proof Explorer
Ascii
Unicode
Theorem
lpi0
Description:
The zero ideal is always principal.
(Contributed by
Stefan O'Rear
, 3-Jan-2015)
Ref
Expression
Hypotheses
lpival.p
⊢
P
=
LPIdeal
⁡
R
lpi0.z
⊢
0
˙
=
0
R
Assertion
lpi0
⊢
R
∈
Ring
→
0
˙
∈
P
Proof
Step
Hyp
Ref
Expression
1
lpival.p
⊢
P
=
LPIdeal
⁡
R
2
lpi0.z
⊢
0
˙
=
0
R
3
eqid
⊢
Base
R
=
Base
R
4
3
2
ring0cl
⊢
R
∈
Ring
→
0
˙
∈
Base
R
5
eqid
⊢
RSpan
⁡
R
=
RSpan
⁡
R
6
5
2
rsp0
⊢
R
∈
Ring
→
RSpan
⁡
R
⁡
0
˙
=
0
˙
7
6
eqcomd
⊢
R
∈
Ring
→
0
˙
=
RSpan
⁡
R
⁡
0
˙
8
sneq
⊢
g
=
0
˙
→
g
=
0
˙
9
8
fveq2d
⊢
g
=
0
˙
→
RSpan
⁡
R
⁡
g
=
RSpan
⁡
R
⁡
0
˙
10
9
rspceeqv
⊢
0
˙
∈
Base
R
∧
0
˙
=
RSpan
⁡
R
⁡
0
˙
→
∃
g
∈
Base
R
0
˙
=
RSpan
⁡
R
⁡
g
11
4
7
10
syl2anc
⊢
R
∈
Ring
→
∃
g
∈
Base
R
0
˙
=
RSpan
⁡
R
⁡
g
12
1
5
3
islpidl
⊢
R
∈
Ring
→
0
˙
∈
P
↔
∃
g
∈
Base
R
0
˙
=
RSpan
⁡
R
⁡
g
13
11
12
mpbird
⊢
R
∈
Ring
→
0
˙
∈
P