Metamath Proof Explorer


Theorem lpigen

Description: An ideal is principal iff it contains an element which right-divides all elements. (Contributed by Stefan O'Rear, 3-Jan-2015) (Revised by Wolf Lammen, 6-Sep-2020)

Ref Expression
Hypotheses lpigen.u U = LIdeal R
lpigen.p P = LPIdeal R
lpigen.d ˙ = r R
Assertion lpigen R Ring I U I P x I y I x ˙ y

Proof

Step Hyp Ref Expression
1 lpigen.u U = LIdeal R
2 lpigen.p P = LPIdeal R
3 lpigen.d ˙ = r R
4 eqid RSpan R = RSpan R
5 eqid Base R = Base R
6 2 4 5 islpidl R Ring I P x Base R I = RSpan R x
7 6 adantr R Ring I U I P x Base R I = RSpan R x
8 5 1 4 3 lidldvgen R Ring I U x Base R I = RSpan R x x I y I x ˙ y
9 8 3expa R Ring I U x Base R I = RSpan R x x I y I x ˙ y
10 9 rexbidva R Ring I U x Base R I = RSpan R x x Base R x I y I x ˙ y
11 simpr x Base R x I y I x ˙ y x I y I x ˙ y
12 5 1 lidlss I U I Base R
13 12 adantl R Ring I U I Base R
14 13 sseld R Ring I U x I x Base R
15 14 adantrd R Ring I U x I y I x ˙ y x Base R
16 15 ancrd R Ring I U x I y I x ˙ y x Base R x I y I x ˙ y
17 11 16 impbid2 R Ring I U x Base R x I y I x ˙ y x I y I x ˙ y
18 17 rexbidv2 R Ring I U x Base R x I y I x ˙ y x I y I x ˙ y
19 7 10 18 3bitrd R Ring I U I P x I y I x ˙ y