Metamath Proof Explorer


Theorem lplnbase

Description: A lattice plane is a lattice element. (Contributed by NM, 17-Jun-2012)

Ref Expression
Hypotheses lplnbase.b B = Base K
lplnbase.p P = LPlanes K
Assertion lplnbase X P X B

Proof

Step Hyp Ref Expression
1 lplnbase.b B = Base K
2 lplnbase.p P = LPlanes K
3 n0i X P ¬ P =
4 2 eqeq1i P = LPlanes K =
5 3 4 sylnib X P ¬ LPlanes K =
6 fvprc ¬ K V LPlanes K =
7 5 6 nsyl2 X P K V
8 eqid K = K
9 eqid LLines K = LLines K
10 1 8 9 2 islpln K V X P X B x LLines K x K X
11 10 simprbda K V X P X B
12 7 11 mpancom X P X B