Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Projective geometries based on Hilbert lattices
lplnbase
Next ⟩
islpln5
Metamath Proof Explorer
Ascii
Unicode
Theorem
lplnbase
Description:
A lattice plane is a lattice element.
(Contributed by
NM
, 17-Jun-2012)
Ref
Expression
Hypotheses
lplnbase.b
⊢
B
=
Base
K
lplnbase.p
⊢
P
=
LPlanes
⁡
K
Assertion
lplnbase
⊢
X
∈
P
→
X
∈
B
Proof
Step
Hyp
Ref
Expression
1
lplnbase.b
⊢
B
=
Base
K
2
lplnbase.p
⊢
P
=
LPlanes
⁡
K
3
n0i
⊢
X
∈
P
→
¬
P
=
∅
4
2
eqeq1i
⊢
P
=
∅
↔
LPlanes
⁡
K
=
∅
5
3
4
sylnib
⊢
X
∈
P
→
¬
LPlanes
⁡
K
=
∅
6
fvprc
⊢
¬
K
∈
V
→
LPlanes
⁡
K
=
∅
7
5
6
nsyl2
⊢
X
∈
P
→
K
∈
V
8
eqid
⊢
⋖
K
=
⋖
K
9
eqid
⊢
LLines
⁡
K
=
LLines
⁡
K
10
1
8
9
2
islpln
⊢
K
∈
V
→
X
∈
P
↔
X
∈
B
∧
∃
x
∈
LLines
⁡
K
x
⋖
K
X
11
10
simprbda
⊢
K
∈
V
∧
X
∈
P
→
X
∈
B
12
7
11
mpancom
⊢
X
∈
P
→
X
∈
B