Step |
Hyp |
Ref |
Expression |
1 |
|
lplncvrlvol2.l |
|
2 |
|
lplncvrlvol2.c |
|
3 |
|
lplncvrlvol2.p |
|
4 |
|
lplncvrlvol2.v |
|
5 |
|
simpr |
|
6 |
|
simpl1 |
|
7 |
|
simpl3 |
|
8 |
3 4
|
lvolnelpln |
|
9 |
6 7 8
|
syl2anc |
|
10 |
|
simpl2 |
|
11 |
|
eleq1 |
|
12 |
10 11
|
syl5ibcom |
|
13 |
12
|
necon3bd |
|
14 |
9 13
|
mpd |
|
15 |
|
eqid |
|
16 |
1 15
|
pltval |
|
17 |
16
|
adantr |
|
18 |
5 14 17
|
mpbir2and |
|
19 |
|
simpl1 |
|
20 |
|
simpl2 |
|
21 |
|
eqid |
|
22 |
21 3
|
lplnbase |
|
23 |
20 22
|
syl |
|
24 |
|
simpl3 |
|
25 |
21 4
|
lvolbase |
|
26 |
24 25
|
syl |
|
27 |
|
simpr |
|
28 |
|
eqid |
|
29 |
|
eqid |
|
30 |
21 1 15 28 2 29
|
hlrelat3 |
|
31 |
19 23 26 27 30
|
syl31anc |
|
32 |
21 1 28 29 4
|
islvol2 |
|
33 |
32
|
adantr |
|
34 |
|
simpr |
|
35 |
21 1 28 29 3
|
islpln2 |
|
36 |
|
simp3rl |
|
37 |
|
simp3rr |
|
38 |
|
simp133 |
|
39 |
38
|
oveq1d |
|
40 |
|
simp23 |
|
41 |
37 39 40
|
3brtr3d |
|
42 |
|
simp11 |
|
43 |
|
simp12 |
|
44 |
|
simp3l |
|
45 |
|
simp21l |
|
46 |
43 44 45
|
3jca |
|
47 |
|
simp21r |
|
48 |
|
simp22l |
|
49 |
|
simp22r |
|
50 |
47 48 49
|
3jca |
|
51 |
|
simp131 |
|
52 |
|
simp132 |
|
53 |
36 38 39
|
3brtr3d |
|
54 |
|
simp111 |
|
55 |
54
|
hllatd |
|
56 |
21 28 29
|
hlatjcl |
|
57 |
42 56
|
syl |
|
58 |
21 29
|
atbase |
|
59 |
43 58
|
syl |
|
60 |
21 28
|
latjcl |
|
61 |
55 57 59 60
|
syl3anc |
|
62 |
21 1 28 2 29
|
cvr1 |
|
63 |
54 61 44 62
|
syl3anc |
|
64 |
53 63
|
mpbird |
|
65 |
1 28 29
|
4at2 |
|
66 |
42 46 50 51 52 64 65
|
syl33anc |
|
67 |
41 66
|
mpbid |
|
68 |
67 39 40
|
3eqtr4d |
|
69 |
36 68
|
breqtrd |
|
70 |
69
|
3exp |
|
71 |
70
|
exp4a |
|
72 |
71
|
3expd |
|
73 |
72
|
rexlimdv3a |
|
74 |
73
|
3expib |
|
75 |
74
|
rexlimdvv |
|
76 |
75
|
adantld |
|
77 |
35 76
|
sylbid |
|
78 |
77
|
imp31 |
|
79 |
34 78
|
syl7 |
|
80 |
79
|
rexlimdvv |
|
81 |
80
|
rexlimdvva |
|
82 |
81
|
adantld |
|
83 |
33 82
|
sylbid |
|
84 |
83
|
3impia |
|
85 |
84
|
rexlimdv |
|
86 |
85
|
imp |
|
87 |
31 86
|
syldan |
|
88 |
18 87
|
syldan |
|