Metamath Proof Explorer


Theorem lplnexllnN

Description: Given an atom on a lattice plane, there is a lattice line whose join with the atom equals the plane. (Contributed by NM, 26-Jun-2012) (New usage is discouraged.)

Ref Expression
Hypotheses lplnexat.l ˙ = K
lplnexat.j ˙ = join K
lplnexat.a A = Atoms K
lplnexat.n N = LLines K
lplnexat.p P = LPlanes K
Assertion lplnexllnN K HL X P Q A Q ˙ X y N ¬ Q ˙ y X = y ˙ Q

Proof

Step Hyp Ref Expression
1 lplnexat.l ˙ = K
2 lplnexat.j ˙ = join K
3 lplnexat.a A = Atoms K
4 lplnexat.n N = LLines K
5 lplnexat.p P = LPlanes K
6 simpl2 K HL X P Q A Q ˙ X X P
7 simpl1 K HL X P Q A Q ˙ X K HL
8 eqid Base K = Base K
9 8 5 lplnbase X P X Base K
10 6 9 syl K HL X P Q A Q ˙ X X Base K
11 8 1 2 3 4 5 islpln3 K HL X Base K X P z N r A ¬ r ˙ z X = z ˙ r
12 7 10 11 syl2anc K HL X P Q A Q ˙ X X P z N r A ¬ r ˙ z X = z ˙ r
13 6 12 mpbid K HL X P Q A Q ˙ X z N r A ¬ r ˙ z X = z ˙ r
14 simpll1 K HL X P Q A Q ˙ X Q ˙ z z N r A ¬ r ˙ z X = z ˙ r K HL
15 simpr2l K HL X P Q A Q ˙ X Q ˙ z z N r A ¬ r ˙ z X = z ˙ r z N
16 simpll3 K HL X P Q A Q ˙ X Q ˙ z z N r A ¬ r ˙ z X = z ˙ r Q A
17 simpr1 K HL X P Q A Q ˙ X Q ˙ z z N r A ¬ r ˙ z X = z ˙ r Q ˙ z
18 1 2 3 4 llnexatN K HL z N Q A Q ˙ z s A Q s z = Q ˙ s
19 14 15 16 17 18 syl31anc K HL X P Q A Q ˙ X Q ˙ z z N r A ¬ r ˙ z X = z ˙ r s A Q s z = Q ˙ s
20 simp1l1 K HL X P Q A Q ˙ X Q ˙ z z N r A ¬ r ˙ z X = z ˙ r s A Q s z = Q ˙ s K HL
21 simp22r K HL X P Q A Q ˙ X Q ˙ z z N r A ¬ r ˙ z X = z ˙ r s A Q s z = Q ˙ s r A
22 simp3l K HL X P Q A Q ˙ X Q ˙ z z N r A ¬ r ˙ z X = z ˙ r s A Q s z = Q ˙ s s A
23 simp1l3 K HL X P Q A Q ˙ X Q ˙ z z N r A ¬ r ˙ z X = z ˙ r s A Q s z = Q ˙ s Q A
24 simp23l K HL X P Q A Q ˙ X Q ˙ z z N r A ¬ r ˙ z X = z ˙ r s A Q s z = Q ˙ s ¬ r ˙ z
25 simp3rr K HL X P Q A Q ˙ X Q ˙ z z N r A ¬ r ˙ z X = z ˙ r s A Q s z = Q ˙ s z = Q ˙ s
26 25 breq2d K HL X P Q A Q ˙ X Q ˙ z z N r A ¬ r ˙ z X = z ˙ r s A Q s z = Q ˙ s r ˙ z r ˙ Q ˙ s
27 24 26 mtbid K HL X P Q A Q ˙ X Q ˙ z z N r A ¬ r ˙ z X = z ˙ r s A Q s z = Q ˙ s ¬ r ˙ Q ˙ s
28 1 2 3 atnlej2 K HL r A Q A s A ¬ r ˙ Q ˙ s r s
29 20 21 23 22 27 28 syl131anc K HL X P Q A Q ˙ X Q ˙ z z N r A ¬ r ˙ z X = z ˙ r s A Q s z = Q ˙ s r s
30 2 3 4 llni2 K HL r A s A r s r ˙ s N
31 20 21 22 29 30 syl31anc K HL X P Q A Q ˙ X Q ˙ z z N r A ¬ r ˙ z X = z ˙ r s A Q s z = Q ˙ s r ˙ s N
32 simp3rl K HL X P Q A Q ˙ X Q ˙ z z N r A ¬ r ˙ z X = z ˙ r s A Q s z = Q ˙ s Q s
33 1 2 3 hlatcon2 K HL Q A s A r A Q s ¬ r ˙ Q ˙ s ¬ Q ˙ r ˙ s
34 20 23 22 21 32 27 33 syl132anc K HL X P Q A Q ˙ X Q ˙ z z N r A ¬ r ˙ z X = z ˙ r s A Q s z = Q ˙ s ¬ Q ˙ r ˙ s
35 simp23r K HL X P Q A Q ˙ X Q ˙ z z N r A ¬ r ˙ z X = z ˙ r s A Q s z = Q ˙ s X = z ˙ r
36 25 oveq1d K HL X P Q A Q ˙ X Q ˙ z z N r A ¬ r ˙ z X = z ˙ r s A Q s z = Q ˙ s z ˙ r = Q ˙ s ˙ r
37 20 hllatd K HL X P Q A Q ˙ X Q ˙ z z N r A ¬ r ˙ z X = z ˙ r s A Q s z = Q ˙ s K Lat
38 8 3 atbase Q A Q Base K
39 23 38 syl K HL X P Q A Q ˙ X Q ˙ z z N r A ¬ r ˙ z X = z ˙ r s A Q s z = Q ˙ s Q Base K
40 8 3 atbase s A s Base K
41 22 40 syl K HL X P Q A Q ˙ X Q ˙ z z N r A ¬ r ˙ z X = z ˙ r s A Q s z = Q ˙ s s Base K
42 8 3 atbase r A r Base K
43 21 42 syl K HL X P Q A Q ˙ X Q ˙ z z N r A ¬ r ˙ z X = z ˙ r s A Q s z = Q ˙ s r Base K
44 8 2 latj31 K Lat Q Base K s Base K r Base K Q ˙ s ˙ r = r ˙ s ˙ Q
45 37 39 41 43 44 syl13anc K HL X P Q A Q ˙ X Q ˙ z z N r A ¬ r ˙ z X = z ˙ r s A Q s z = Q ˙ s Q ˙ s ˙ r = r ˙ s ˙ Q
46 35 36 45 3eqtrd K HL X P Q A Q ˙ X Q ˙ z z N r A ¬ r ˙ z X = z ˙ r s A Q s z = Q ˙ s X = r ˙ s ˙ Q
47 breq2 y = r ˙ s Q ˙ y Q ˙ r ˙ s
48 47 notbid y = r ˙ s ¬ Q ˙ y ¬ Q ˙ r ˙ s
49 oveq1 y = r ˙ s y ˙ Q = r ˙ s ˙ Q
50 49 eqeq2d y = r ˙ s X = y ˙ Q X = r ˙ s ˙ Q
51 48 50 anbi12d y = r ˙ s ¬ Q ˙ y X = y ˙ Q ¬ Q ˙ r ˙ s X = r ˙ s ˙ Q
52 51 rspcev r ˙ s N ¬ Q ˙ r ˙ s X = r ˙ s ˙ Q y N ¬ Q ˙ y X = y ˙ Q
53 31 34 46 52 syl12anc K HL X P Q A Q ˙ X Q ˙ z z N r A ¬ r ˙ z X = z ˙ r s A Q s z = Q ˙ s y N ¬ Q ˙ y X = y ˙ Q
54 53 3expia K HL X P Q A Q ˙ X Q ˙ z z N r A ¬ r ˙ z X = z ˙ r s A Q s z = Q ˙ s y N ¬ Q ˙ y X = y ˙ Q
55 54 expd K HL X P Q A Q ˙ X Q ˙ z z N r A ¬ r ˙ z X = z ˙ r s A Q s z = Q ˙ s y N ¬ Q ˙ y X = y ˙ Q
56 55 rexlimdv K HL X P Q A Q ˙ X Q ˙ z z N r A ¬ r ˙ z X = z ˙ r s A Q s z = Q ˙ s y N ¬ Q ˙ y X = y ˙ Q
57 19 56 mpd K HL X P Q A Q ˙ X Q ˙ z z N r A ¬ r ˙ z X = z ˙ r y N ¬ Q ˙ y X = y ˙ Q
58 57 3exp2 K HL X P Q A Q ˙ X Q ˙ z z N r A ¬ r ˙ z X = z ˙ r y N ¬ Q ˙ y X = y ˙ Q
59 simpr2l K HL X P Q A Q ˙ X ¬ Q ˙ z z N r A ¬ r ˙ z X = z ˙ r z N
60 simpr1 K HL X P Q A Q ˙ X ¬ Q ˙ z z N r A ¬ r ˙ z X = z ˙ r ¬ Q ˙ z
61 simpll1 K HL X P Q A Q ˙ X ¬ Q ˙ z z N r A ¬ r ˙ z X = z ˙ r K HL
62 61 hllatd K HL X P Q A Q ˙ X ¬ Q ˙ z z N r A ¬ r ˙ z X = z ˙ r K Lat
63 8 4 llnbase z N z Base K
64 59 63 syl K HL X P Q A Q ˙ X ¬ Q ˙ z z N r A ¬ r ˙ z X = z ˙ r z Base K
65 simpr2r K HL X P Q A Q ˙ X ¬ Q ˙ z z N r A ¬ r ˙ z X = z ˙ r r A
66 65 42 syl K HL X P Q A Q ˙ X ¬ Q ˙ z z N r A ¬ r ˙ z X = z ˙ r r Base K
67 8 1 2 latlej1 K Lat z Base K r Base K z ˙ z ˙ r
68 62 64 66 67 syl3anc K HL X P Q A Q ˙ X ¬ Q ˙ z z N r A ¬ r ˙ z X = z ˙ r z ˙ z ˙ r
69 simpr3r K HL X P Q A Q ˙ X ¬ Q ˙ z z N r A ¬ r ˙ z X = z ˙ r X = z ˙ r
70 68 69 breqtrrd K HL X P Q A Q ˙ X ¬ Q ˙ z z N r A ¬ r ˙ z X = z ˙ r z ˙ X
71 simplr K HL X P Q A Q ˙ X ¬ Q ˙ z z N r A ¬ r ˙ z X = z ˙ r Q ˙ X
72 simpll3 K HL X P Q A Q ˙ X ¬ Q ˙ z z N r A ¬ r ˙ z X = z ˙ r Q A
73 72 38 syl K HL X P Q A Q ˙ X ¬ Q ˙ z z N r A ¬ r ˙ z X = z ˙ r Q Base K
74 simpll2 K HL X P Q A Q ˙ X ¬ Q ˙ z z N r A ¬ r ˙ z X = z ˙ r X P
75 74 9 syl K HL X P Q A Q ˙ X ¬ Q ˙ z z N r A ¬ r ˙ z X = z ˙ r X Base K
76 8 1 2 latjle12 K Lat z Base K Q Base K X Base K z ˙ X Q ˙ X z ˙ Q ˙ X
77 62 64 73 75 76 syl13anc K HL X P Q A Q ˙ X ¬ Q ˙ z z N r A ¬ r ˙ z X = z ˙ r z ˙ X Q ˙ X z ˙ Q ˙ X
78 70 71 77 mpbi2and K HL X P Q A Q ˙ X ¬ Q ˙ z z N r A ¬ r ˙ z X = z ˙ r z ˙ Q ˙ X
79 8 2 latjcl K Lat z Base K Q Base K z ˙ Q Base K
80 62 64 73 79 syl3anc K HL X P Q A Q ˙ X ¬ Q ˙ z z N r A ¬ r ˙ z X = z ˙ r z ˙ Q Base K
81 eqid K = K
82 8 1 2 81 3 cvr1 K HL z Base K Q A ¬ Q ˙ z z K z ˙ Q
83 61 64 72 82 syl3anc K HL X P Q A Q ˙ X ¬ Q ˙ z z N r A ¬ r ˙ z X = z ˙ r ¬ Q ˙ z z K z ˙ Q
84 60 83 mpbid K HL X P Q A Q ˙ X ¬ Q ˙ z z N r A ¬ r ˙ z X = z ˙ r z K z ˙ Q
85 8 81 4 5 lplni K HL z ˙ Q Base K z N z K z ˙ Q z ˙ Q P
86 61 80 59 84 85 syl31anc K HL X P Q A Q ˙ X ¬ Q ˙ z z N r A ¬ r ˙ z X = z ˙ r z ˙ Q P
87 1 5 lplncmp K HL z ˙ Q P X P z ˙ Q ˙ X z ˙ Q = X
88 61 86 74 87 syl3anc K HL X P Q A Q ˙ X ¬ Q ˙ z z N r A ¬ r ˙ z X = z ˙ r z ˙ Q ˙ X z ˙ Q = X
89 78 88 mpbid K HL X P Q A Q ˙ X ¬ Q ˙ z z N r A ¬ r ˙ z X = z ˙ r z ˙ Q = X
90 89 eqcomd K HL X P Q A Q ˙ X ¬ Q ˙ z z N r A ¬ r ˙ z X = z ˙ r X = z ˙ Q
91 breq2 y = z Q ˙ y Q ˙ z
92 91 notbid y = z ¬ Q ˙ y ¬ Q ˙ z
93 oveq1 y = z y ˙ Q = z ˙ Q
94 93 eqeq2d y = z X = y ˙ Q X = z ˙ Q
95 92 94 anbi12d y = z ¬ Q ˙ y X = y ˙ Q ¬ Q ˙ z X = z ˙ Q
96 95 rspcev z N ¬ Q ˙ z X = z ˙ Q y N ¬ Q ˙ y X = y ˙ Q
97 59 60 90 96 syl12anc K HL X P Q A Q ˙ X ¬ Q ˙ z z N r A ¬ r ˙ z X = z ˙ r y N ¬ Q ˙ y X = y ˙ Q
98 97 3exp2 K HL X P Q A Q ˙ X ¬ Q ˙ z z N r A ¬ r ˙ z X = z ˙ r y N ¬ Q ˙ y X = y ˙ Q
99 58 98 pm2.61d K HL X P Q A Q ˙ X z N r A ¬ r ˙ z X = z ˙ r y N ¬ Q ˙ y X = y ˙ Q
100 99 rexlimdvv K HL X P Q A Q ˙ X z N r A ¬ r ˙ z X = z ˙ r y N ¬ Q ˙ y X = y ˙ Q
101 13 100 mpd K HL X P Q A Q ˙ X y N ¬ Q ˙ y X = y ˙ Q