Metamath Proof Explorer


Theorem lplnle

Description: Any element greater than 0 and not an atom and not a lattice line majorizes a lattice plane. (Contributed by NM, 28-Jun-2012)

Ref Expression
Hypotheses lplnle.b B = Base K
lplnle.l ˙ = K
lplnle.z 0 ˙ = 0. K
lplnle.a A = Atoms K
lplnle.n N = LLines K
lplnle.p P = LPlanes K
Assertion lplnle K HL X B X 0 ˙ ¬ X A ¬ X N y P y ˙ X

Proof

Step Hyp Ref Expression
1 lplnle.b B = Base K
2 lplnle.l ˙ = K
3 lplnle.z 0 ˙ = 0. K
4 lplnle.a A = Atoms K
5 lplnle.n N = LLines K
6 lplnle.p P = LPlanes K
7 1 2 3 4 5 llnle K HL X B X 0 ˙ ¬ X A z N z ˙ X
8 7 3adantr3 K HL X B X 0 ˙ ¬ X A ¬ X N z N z ˙ X
9 simp1ll K HL X B X 0 ˙ ¬ X A ¬ X N z N z ˙ X K HL
10 1 5 llnbase z N z B
11 10 3ad2ant2 K HL X B X 0 ˙ ¬ X A ¬ X N z N z ˙ X z B
12 simp1lr K HL X B X 0 ˙ ¬ X A ¬ X N z N z ˙ X X B
13 simp3 K HL X B X 0 ˙ ¬ X A ¬ X N z N z ˙ X z ˙ X
14 simp2 K HL X B X 0 ˙ ¬ X A ¬ X N z N z ˙ X z N
15 simp1r3 K HL X B X 0 ˙ ¬ X A ¬ X N z N z ˙ X ¬ X N
16 nelne2 z N ¬ X N z X
17 14 15 16 syl2anc K HL X B X 0 ˙ ¬ X A ¬ X N z N z ˙ X z X
18 eqid < K = < K
19 2 18 pltval K HL z N X B z < K X z ˙ X z X
20 9 14 12 19 syl3anc K HL X B X 0 ˙ ¬ X A ¬ X N z N z ˙ X z < K X z ˙ X z X
21 13 17 20 mpbir2and K HL X B X 0 ˙ ¬ X A ¬ X N z N z ˙ X z < K X
22 eqid join K = join K
23 eqid K = K
24 1 2 18 22 23 4 hlrelat3 K HL z B X B z < K X p A z K z join K p z join K p ˙ X
25 9 11 12 21 24 syl31anc K HL X B X 0 ˙ ¬ X A ¬ X N z N z ˙ X p A z K z join K p z join K p ˙ X
26 simp1ll K HL X B X 0 ˙ ¬ X A ¬ X N z N z ˙ X p A z K z join K p z join K p ˙ X K HL
27 26 hllatd K HL X B X 0 ˙ ¬ X A ¬ X N z N z ˙ X p A z K z join K p z join K p ˙ X K Lat
28 simp21 K HL X B X 0 ˙ ¬ X A ¬ X N z N z ˙ X p A z K z join K p z join K p ˙ X z N
29 28 10 syl K HL X B X 0 ˙ ¬ X A ¬ X N z N z ˙ X p A z K z join K p z join K p ˙ X z B
30 simp23 K HL X B X 0 ˙ ¬ X A ¬ X N z N z ˙ X p A z K z join K p z join K p ˙ X p A
31 1 4 atbase p A p B
32 30 31 syl K HL X B X 0 ˙ ¬ X A ¬ X N z N z ˙ X p A z K z join K p z join K p ˙ X p B
33 1 22 latjcl K Lat z B p B z join K p B
34 27 29 32 33 syl3anc K HL X B X 0 ˙ ¬ X A ¬ X N z N z ˙ X p A z K z join K p z join K p ˙ X z join K p B
35 simp3l K HL X B X 0 ˙ ¬ X A ¬ X N z N z ˙ X p A z K z join K p z join K p ˙ X z K z join K p
36 1 23 5 6 lplni K HL z join K p B z N z K z join K p z join K p P
37 26 34 28 35 36 syl31anc K HL X B X 0 ˙ ¬ X A ¬ X N z N z ˙ X p A z K z join K p z join K p ˙ X z join K p P
38 simp3r K HL X B X 0 ˙ ¬ X A ¬ X N z N z ˙ X p A z K z join K p z join K p ˙ X z join K p ˙ X
39 breq1 y = z join K p y ˙ X z join K p ˙ X
40 39 rspcev z join K p P z join K p ˙ X y P y ˙ X
41 37 38 40 syl2anc K HL X B X 0 ˙ ¬ X A ¬ X N z N z ˙ X p A z K z join K p z join K p ˙ X y P y ˙ X
42 41 3exp K HL X B X 0 ˙ ¬ X A ¬ X N z N z ˙ X p A z K z join K p z join K p ˙ X y P y ˙ X
43 42 3expd K HL X B X 0 ˙ ¬ X A ¬ X N z N z ˙ X p A z K z join K p z join K p ˙ X y P y ˙ X
44 43 3imp K HL X B X 0 ˙ ¬ X A ¬ X N z N z ˙ X p A z K z join K p z join K p ˙ X y P y ˙ X
45 44 rexlimdv K HL X B X 0 ˙ ¬ X A ¬ X N z N z ˙ X p A z K z join K p z join K p ˙ X y P y ˙ X
46 25 45 mpd K HL X B X 0 ˙ ¬ X A ¬ X N z N z ˙ X y P y ˙ X
47 46 3exp K HL X B X 0 ˙ ¬ X A ¬ X N z N z ˙ X y P y ˙ X
48 47 rexlimdv K HL X B X 0 ˙ ¬ X A ¬ X N z N z ˙ X y P y ˙ X
49 8 48 mpd K HL X B X 0 ˙ ¬ X A ¬ X N y P y ˙ X