Metamath Proof Explorer


Theorem lplnnleat

Description: A lattice plane cannot majorize an atom. (Contributed by NM, 14-Jul-2012)

Ref Expression
Hypotheses lplnnleat.l ˙ = K
lplnnleat.a A = Atoms K
lplnnleat.p P = LPlanes K
Assertion lplnnleat K HL X P Q A ¬ X ˙ Q

Proof

Step Hyp Ref Expression
1 lplnnleat.l ˙ = K
2 lplnnleat.a A = Atoms K
3 lplnnleat.p P = LPlanes K
4 simp1 K HL X P Q A K HL
5 simp2 K HL X P Q A X P
6 simp3 K HL X P Q A Q A
7 eqid join K = join K
8 1 7 2 3 lplnnle2at K HL X P Q A Q A ¬ X ˙ Q join K Q
9 4 5 6 6 8 syl13anc K HL X P Q A ¬ X ˙ Q join K Q
10 7 2 hlatjidm K HL Q A Q join K Q = Q
11 10 3adant2 K HL X P Q A Q join K Q = Q
12 11 breq2d K HL X P Q A X ˙ Q join K Q X ˙ Q
13 9 12 mtbid K HL X P Q A ¬ X ˙ Q