Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Projective geometries based on Hilbert lattices
lplnnleat
Next ⟩
lplnnlelln
Metamath Proof Explorer
Ascii
Unicode
Theorem
lplnnleat
Description:
A lattice plane cannot majorize an atom.
(Contributed by
NM
, 14-Jul-2012)
Ref
Expression
Hypotheses
lplnnleat.l
⊢
≤
˙
=
≤
K
lplnnleat.a
⊢
A
=
Atoms
⁡
K
lplnnleat.p
⊢
P
=
LPlanes
⁡
K
Assertion
lplnnleat
⊢
K
∈
HL
∧
X
∈
P
∧
Q
∈
A
→
¬
X
≤
˙
Q
Proof
Step
Hyp
Ref
Expression
1
lplnnleat.l
⊢
≤
˙
=
≤
K
2
lplnnleat.a
⊢
A
=
Atoms
⁡
K
3
lplnnleat.p
⊢
P
=
LPlanes
⁡
K
4
simp1
⊢
K
∈
HL
∧
X
∈
P
∧
Q
∈
A
→
K
∈
HL
5
simp2
⊢
K
∈
HL
∧
X
∈
P
∧
Q
∈
A
→
X
∈
P
6
simp3
⊢
K
∈
HL
∧
X
∈
P
∧
Q
∈
A
→
Q
∈
A
7
eqid
⊢
join
⁡
K
=
join
⁡
K
8
1
7
2
3
lplnnle2at
⊢
K
∈
HL
∧
X
∈
P
∧
Q
∈
A
∧
Q
∈
A
→
¬
X
≤
˙
Q
join
⁡
K
Q
9
4
5
6
6
8
syl13anc
⊢
K
∈
HL
∧
X
∈
P
∧
Q
∈
A
→
¬
X
≤
˙
Q
join
⁡
K
Q
10
7
2
hlatjidm
⊢
K
∈
HL
∧
Q
∈
A
→
Q
join
⁡
K
Q
=
Q
11
10
3adant2
⊢
K
∈
HL
∧
X
∈
P
∧
Q
∈
A
→
Q
join
⁡
K
Q
=
Q
12
11
breq2d
⊢
K
∈
HL
∧
X
∈
P
∧
Q
∈
A
→
X
≤
˙
Q
join
⁡
K
Q
↔
X
≤
˙
Q
13
9
12
mtbid
⊢
K
∈
HL
∧
X
∈
P
∧
Q
∈
A
→
¬
X
≤
˙
Q