Metamath Proof Explorer


Theorem lplnnlelln

Description: A lattice plane is not less than or equal to a lattice line. (Contributed by NM, 14-Jul-2012)

Ref Expression
Hypotheses lplnnlelln.l ˙ = K
lplnnlelln.n N = LLines K
lplnnlelln.p P = LPlanes K
Assertion lplnnlelln K HL X P Y N ¬ X ˙ Y

Proof

Step Hyp Ref Expression
1 lplnnlelln.l ˙ = K
2 lplnnlelln.n N = LLines K
3 lplnnlelln.p P = LPlanes K
4 simp3 K HL X P Y N Y N
5 eqid Base K = Base K
6 eqid join K = join K
7 eqid Atoms K = Atoms K
8 5 6 7 2 islln2 K HL Y N Y Base K q Atoms K r Atoms K q r Y = q join K r
9 8 3ad2ant1 K HL X P Y N Y N Y Base K q Atoms K r Atoms K q r Y = q join K r
10 4 9 mpbid K HL X P Y N Y Base K q Atoms K r Atoms K q r Y = q join K r
11 simp11 K HL X P Y N q Atoms K r Atoms K q r Y = q join K r K HL
12 simp12 K HL X P Y N q Atoms K r Atoms K q r Y = q join K r X P
13 simp2l K HL X P Y N q Atoms K r Atoms K q r Y = q join K r q Atoms K
14 simp2r K HL X P Y N q Atoms K r Atoms K q r Y = q join K r r Atoms K
15 1 6 7 3 lplnnle2at K HL X P q Atoms K r Atoms K ¬ X ˙ q join K r
16 11 12 13 14 15 syl13anc K HL X P Y N q Atoms K r Atoms K q r Y = q join K r ¬ X ˙ q join K r
17 simp3r K HL X P Y N q Atoms K r Atoms K q r Y = q join K r Y = q join K r
18 17 breq2d K HL X P Y N q Atoms K r Atoms K q r Y = q join K r X ˙ Y X ˙ q join K r
19 16 18 mtbird K HL X P Y N q Atoms K r Atoms K q r Y = q join K r ¬ X ˙ Y
20 19 3exp K HL X P Y N q Atoms K r Atoms K q r Y = q join K r ¬ X ˙ Y
21 20 rexlimdvv K HL X P Y N q Atoms K r Atoms K q r Y = q join K r ¬ X ˙ Y
22 21 adantld K HL X P Y N Y Base K q Atoms K r Atoms K q r Y = q join K r ¬ X ˙ Y
23 10 22 mpd K HL X P Y N ¬ X ˙ Y