Metamath Proof Explorer


Theorem lplnri1

Description: Property of a lattice plane expressed as the join of 3 atoms. (Contributed by NM, 30-Jul-2012)

Ref Expression
Hypotheses lplnri1.j ˙ = join K
lplnri1.a A = Atoms K
lplnri1.p P = LPlanes K
lplnri1.y Y = Q ˙ R ˙ S
Assertion lplnri1 K HL Q A R A S A Y P Q R

Proof

Step Hyp Ref Expression
1 lplnri1.j ˙ = join K
2 lplnri1.a A = Atoms K
3 lplnri1.p P = LPlanes K
4 lplnri1.y Y = Q ˙ R ˙ S
5 eqid K = K
6 5 1 2 3 4 islpln2ah K HL Q A R A S A Y P Q R ¬ S K Q ˙ R
7 6 biimp3a K HL Q A R A S A Y P Q R ¬ S K Q ˙ R
8 7 simpld K HL Q A R A S A Y P Q R