Metamath Proof Explorer


Theorem lplnri3N

Description: Property of a lattice plane expressed as the join of 3 atoms. (Contributed by NM, 30-Jul-2012) (New usage is discouraged.)

Ref Expression
Hypotheses lplnri1.j ˙ = join K
lplnri1.a A = Atoms K
lplnri1.p P = LPlanes K
lplnri1.y Y = Q ˙ R ˙ S
Assertion lplnri3N K HL Q A R A S A Y P R S

Proof

Step Hyp Ref Expression
1 lplnri1.j ˙ = join K
2 lplnri1.a A = Atoms K
3 lplnri1.p P = LPlanes K
4 lplnri1.y Y = Q ˙ R ˙ S
5 simp1 K HL Q A R A S A Y P K HL
6 simp22 K HL Q A R A S A Y P R A
7 simp21 K HL Q A R A S A Y P Q A
8 simp23 K HL Q A R A S A Y P S A
9 eqid K = K
10 9 1 2 3 4 lplnribN K HL Q A R A S A Y P ¬ R K Q ˙ S
11 9 1 2 atnlej2 K HL R A Q A S A ¬ R K Q ˙ S R S
12 5 6 7 8 10 11 syl131anc K HL Q A R A S A Y P R S