Metamath Proof Explorer


Theorem lplnric

Description: Property of a lattice plane expressed as the join of 3 atoms. (Contributed by NM, 30-Jul-2012)

Ref Expression
Hypotheses islpln2a.l ˙ = K
islpln2a.j ˙ = join K
islpln2a.a A = Atoms K
islpln2a.p P = LPlanes K
islpln2a.y Y = Q ˙ R ˙ S
Assertion lplnric K HL Q A R A S A Y P ¬ S ˙ Q ˙ R

Proof

Step Hyp Ref Expression
1 islpln2a.l ˙ = K
2 islpln2a.j ˙ = join K
3 islpln2a.a A = Atoms K
4 islpln2a.p P = LPlanes K
5 islpln2a.y Y = Q ˙ R ˙ S
6 1 2 3 4 5 islpln2ah K HL Q A R A S A Y P Q R ¬ S ˙ Q ˙ R
7 6 biimp3a K HL Q A R A S A Y P Q R ¬ S ˙ Q ˙ R
8 7 simprd K HL Q A R A S A Y P ¬ S ˙ Q ˙ R