Metamath Proof Explorer


Theorem lpss3

Description: Subset relationship for limit points. (Contributed by Mario Carneiro, 25-Dec-2016)

Ref Expression
Hypothesis lpfval.1 X = J
Assertion lpss3 J Top S X T S limPt J T limPt J S

Proof

Step Hyp Ref Expression
1 lpfval.1 X = J
2 simp1 J Top S X T S J Top
3 simp2 J Top S X T S S X
4 3 ssdifssd J Top S X T S S x X
5 simp3 J Top S X T S T S
6 5 ssdifd J Top S X T S T x S x
7 1 clsss J Top S x X T x S x cls J T x cls J S x
8 2 4 6 7 syl3anc J Top S X T S cls J T x cls J S x
9 8 sseld J Top S X T S x cls J T x x cls J S x
10 5 3 sstrd J Top S X T S T X
11 1 islp J Top T X x limPt J T x cls J T x
12 2 10 11 syl2anc J Top S X T S x limPt J T x cls J T x
13 1 islp J Top S X x limPt J S x cls J S x
14 2 3 13 syl2anc J Top S X T S x limPt J S x cls J S x
15 9 12 14 3imtr4d J Top S X T S x limPt J T x limPt J S
16 15 ssrdv J Top S X T S limPt J T limPt J S