Database
BASIC TOPOLOGY
Topology
Limit points and perfect sets
lpss3
Next ⟩
islp2
Metamath Proof Explorer
Ascii
Unicode
Theorem
lpss3
Description:
Subset relationship for limit points.
(Contributed by
Mario Carneiro
, 25-Dec-2016)
Ref
Expression
Hypothesis
lpfval.1
⊢
X
=
⋃
J
Assertion
lpss3
⊢
J
∈
Top
∧
S
⊆
X
∧
T
⊆
S
→
limPt
⁡
J
⁡
T
⊆
limPt
⁡
J
⁡
S
Proof
Step
Hyp
Ref
Expression
1
lpfval.1
⊢
X
=
⋃
J
2
simp1
⊢
J
∈
Top
∧
S
⊆
X
∧
T
⊆
S
→
J
∈
Top
3
simp2
⊢
J
∈
Top
∧
S
⊆
X
∧
T
⊆
S
→
S
⊆
X
4
3
ssdifssd
⊢
J
∈
Top
∧
S
⊆
X
∧
T
⊆
S
→
S
∖
x
⊆
X
5
simp3
⊢
J
∈
Top
∧
S
⊆
X
∧
T
⊆
S
→
T
⊆
S
6
5
ssdifd
⊢
J
∈
Top
∧
S
⊆
X
∧
T
⊆
S
→
T
∖
x
⊆
S
∖
x
7
1
clsss
⊢
J
∈
Top
∧
S
∖
x
⊆
X
∧
T
∖
x
⊆
S
∖
x
→
cls
⁡
J
⁡
T
∖
x
⊆
cls
⁡
J
⁡
S
∖
x
8
2
4
6
7
syl3anc
⊢
J
∈
Top
∧
S
⊆
X
∧
T
⊆
S
→
cls
⁡
J
⁡
T
∖
x
⊆
cls
⁡
J
⁡
S
∖
x
9
8
sseld
⊢
J
∈
Top
∧
S
⊆
X
∧
T
⊆
S
→
x
∈
cls
⁡
J
⁡
T
∖
x
→
x
∈
cls
⁡
J
⁡
S
∖
x
10
5
3
sstrd
⊢
J
∈
Top
∧
S
⊆
X
∧
T
⊆
S
→
T
⊆
X
11
1
islp
⊢
J
∈
Top
∧
T
⊆
X
→
x
∈
limPt
⁡
J
⁡
T
↔
x
∈
cls
⁡
J
⁡
T
∖
x
12
2
10
11
syl2anc
⊢
J
∈
Top
∧
S
⊆
X
∧
T
⊆
S
→
x
∈
limPt
⁡
J
⁡
T
↔
x
∈
cls
⁡
J
⁡
T
∖
x
13
1
islp
⊢
J
∈
Top
∧
S
⊆
X
→
x
∈
limPt
⁡
J
⁡
S
↔
x
∈
cls
⁡
J
⁡
S
∖
x
14
2
3
13
syl2anc
⊢
J
∈
Top
∧
S
⊆
X
∧
T
⊆
S
→
x
∈
limPt
⁡
J
⁡
S
↔
x
∈
cls
⁡
J
⁡
S
∖
x
15
9
12
14
3imtr4d
⊢
J
∈
Top
∧
S
⊆
X
∧
T
⊆
S
→
x
∈
limPt
⁡
J
⁡
T
→
x
∈
limPt
⁡
J
⁡
S
16
15
ssrdv
⊢
J
∈
Top
∧
S
⊆
X
∧
T
⊆
S
→
limPt
⁡
J
⁡
T
⊆
limPt
⁡
J
⁡
S