Metamath Proof Explorer


Theorem lpsscls

Description: The limit points of a subset are included in the subset's closure. (Contributed by NM, 26-Feb-2007)

Ref Expression
Hypothesis lpfval.1 X = J
Assertion lpsscls J Top S X limPt J S cls J S

Proof

Step Hyp Ref Expression
1 lpfval.1 X = J
2 1 lpval J Top S X limPt J S = x | x cls J S x
3 difss S x S
4 1 clsss J Top S X S x S cls J S x cls J S
5 3 4 mp3an3 J Top S X cls J S x cls J S
6 5 sseld J Top S X x cls J S x x cls J S
7 6 abssdv J Top S X x | x cls J S x cls J S
8 2 7 eqsstrd J Top S X limPt J S cls J S