Metamath Proof Explorer


Theorem lptioo2

Description: The upper bound of an open interval is a limit point of the interval. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses lptioo2.1 J = topGen ran .
lptioo2.2 φ A *
lptioo2.3 φ B
lptioo2.4 φ A < B
Assertion lptioo2 φ B limPt J A B

Proof

Step Hyp Ref Expression
1 lptioo2.1 J = topGen ran .
2 lptioo2.2 φ A *
3 lptioo2.3 φ B
4 lptioo2.4 φ A < B
5 difssd φ A B B A B
6 simpr φ x A B x A B
7 ubioo ¬ B A B
8 eleq1 x = B x A B B A B
9 8 biimpcd x A B x = B B A B
10 7 9 mtoi x A B ¬ x = B
11 10 adantl φ x A B ¬ x = B
12 velsn x B x = B
13 11 12 sylnibr φ x A B ¬ x B
14 6 13 eldifd φ x A B x A B B
15 5 14 eqelssd φ A B B = A B
16 15 ineq2d φ a b A B B = a b A B
17 16 ad2antrr φ a * b * B a b a b A B B = a b A B
18 simplrl φ a * b * B a b a *
19 simplrr φ a * b * B a b b *
20 2 ad2antrr φ a * b * B a b A *
21 elioo3g B a b a * b * B * a < B B < b
22 21 biimpi B a b a * b * B * a < B B < b
23 22 simpld B a b a * b * B *
24 23 simp3d B a b B *
25 24 adantl φ a * b * B a b B *
26 iooin a * b * A * B * a b A B = if a A A a if b B b B
27 18 19 20 25 26 syl22anc φ a * b * B a b a b A B = if a A A a if b B b B
28 iftrue a A if a A A a = A
29 28 adantl φ a * b * B a b a A if a A A a = A
30 4 ad3antrrr φ a * b * B a b a A A < B
31 29 30 eqbrtrd φ a * b * B a b a A if a A A a < B
32 iffalse ¬ a A if a A A a = a
33 32 adantl φ a * b * B a b ¬ a A if a A A a = a
34 22 simprd B a b a < B B < b
35 34 simpld B a b a < B
36 35 ad2antlr φ a * b * B a b ¬ a A a < B
37 33 36 eqbrtrd φ a * b * B a b ¬ a A if a A A a < B
38 31 37 pm2.61dan φ a * b * B a b if a A A a < B
39 34 simprd B a b B < b
40 23 simp2d B a b b *
41 xrltnle B * b * B < b ¬ b B
42 24 40 41 syl2anc B a b B < b ¬ b B
43 39 42 mpbid B a b ¬ b B
44 iffalse ¬ b B if b B b B = B
45 43 44 syl B a b if b B b B = B
46 45 eqcomd B a b B = if b B b B
47 46 adantl φ a * b * B a b B = if b B b B
48 38 47 breqtrd φ a * b * B a b if a A A a < if b B b B
49 20 18 ifcld φ a * b * B a b if a A A a *
50 47 25 eqeltrrd φ a * b * B a b if b B b B *
51 ioon0 if a A A a * if b B b B * if a A A a if b B b B if a A A a < if b B b B
52 49 50 51 syl2anc φ a * b * B a b if a A A a if b B b B if a A A a < if b B b B
53 48 52 mpbird φ a * b * B a b if a A A a if b B b B
54 27 53 eqnetrd φ a * b * B a b a b A B
55 17 54 eqnetrd φ a * b * B a b a b A B B
56 55 ex φ a * b * B a b a b A B B
57 56 ralrimivva φ a * b * B a b a b A B B
58 ioossre A B
59 58 a1i φ A B
60 1 59 3 islptre φ B limPt J A B a * b * B a b a b A B B
61 57 60 mpbird φ B limPt J A B