Metamath Proof Explorer


Theorem lptioo2cn

Description: The upper bound of an open interval is a limit point of the interval, wirth respect to the standard topology on complex numbers. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses lptioo2cn.1 J = TopOpen fld
lptioo2cn.2 φ A *
lptioo2cn.3 φ B
lptioo2cn.4 φ A < B
Assertion lptioo2cn φ B limPt J A B

Proof

Step Hyp Ref Expression
1 lptioo2cn.1 J = TopOpen fld
2 lptioo2cn.2 φ A *
3 lptioo2cn.3 φ B
4 lptioo2cn.4 φ A < B
5 eqid topGen ran . = topGen ran .
6 5 2 3 4 lptioo2 φ B limPt topGen ran . A B
7 eqid TopOpen fld = TopOpen fld
8 7 cnfldtop TopOpen fld Top
9 ax-resscn
10 unicntop = TopOpen fld
11 9 10 sseqtri TopOpen fld
12 ioossre A B
13 eqid TopOpen fld = TopOpen fld
14 7 tgioo2 topGen ran . = TopOpen fld 𝑡
15 13 14 restlp TopOpen fld Top TopOpen fld A B limPt topGen ran . A B = limPt TopOpen fld A B
16 8 11 12 15 mp3an limPt topGen ran . A B = limPt TopOpen fld A B
17 6 16 eleqtrdi φ B limPt TopOpen fld A B
18 elin B limPt TopOpen fld A B B limPt TopOpen fld A B B
19 17 18 sylib φ B limPt TopOpen fld A B B
20 19 simpld φ B limPt TopOpen fld A B
21 1 eqcomi TopOpen fld = J
22 21 fveq2i limPt TopOpen fld = limPt J
23 22 fveq1i limPt TopOpen fld A B = limPt J A B
24 20 23 eleqtrdi φ B limPt J A B