Step |
Hyp |
Ref |
Expression |
1 |
|
lptre2pt.j |
|
2 |
|
lptre2pt.a |
|
3 |
|
lptre2pt.x |
|
4 |
|
lptre2pt.e |
|
5 |
|
n0 |
|
6 |
3 5
|
sylib |
|
7 |
|
simpr |
|
8 |
2
|
adantr |
|
9 |
|
retop |
|
10 |
1 9
|
eqeltri |
|
11 |
|
uniretop |
|
12 |
1
|
unieqi |
|
13 |
11 12
|
eqtr4i |
|
14 |
13
|
lpss |
|
15 |
10 8 14
|
sylancr |
|
16 |
15 7
|
sseldd |
|
17 |
1 8 16
|
islptre |
|
18 |
7 17
|
mpbid |
|
19 |
4
|
rpred |
|
20 |
19
|
adantr |
|
21 |
20
|
rehalfcld |
|
22 |
16 21
|
resubcld |
|
23 |
22
|
rexrd |
|
24 |
16 21
|
readdcld |
|
25 |
24
|
rexrd |
|
26 |
4
|
rphalfcld |
|
27 |
26
|
adantr |
|
28 |
16 27
|
ltsubrpd |
|
29 |
16 27
|
ltaddrpd |
|
30 |
23 25 16 28 29
|
eliood |
|
31 |
|
oveq1 |
|
32 |
31
|
eleq2d |
|
33 |
31
|
ineq1d |
|
34 |
33
|
neeq1d |
|
35 |
32 34
|
imbi12d |
|
36 |
|
oveq2 |
|
37 |
36
|
eleq2d |
|
38 |
36
|
ineq1d |
|
39 |
38
|
neeq1d |
|
40 |
37 39
|
imbi12d |
|
41 |
35 40
|
rspc2v |
|
42 |
23 25 41
|
syl2anc |
|
43 |
18 30 42
|
mp2d |
|
44 |
|
n0 |
|
45 |
43 44
|
sylib |
|
46 |
|
elinel2 |
|
47 |
46
|
eldifad |
|
48 |
47
|
adantl |
|
49 |
|
elinel1 |
|
50 |
49
|
adantl |
|
51 |
46
|
eldifbd |
|
52 |
51
|
adantl |
|
53 |
50 52
|
eldifd |
|
54 |
48 53
|
jca |
|
55 |
54
|
ex |
|
56 |
55
|
eximdv |
|
57 |
45 56
|
mpd |
|
58 |
|
df-rex |
|
59 |
57 58
|
sylibr |
|
60 |
18
|
adantr |
|
61 |
|
eldifi |
|
62 |
|
elioore |
|
63 |
61 62
|
syl |
|
64 |
63
|
adantl |
|
65 |
16
|
adantr |
|
66 |
|
eldifsni |
|
67 |
66
|
adantl |
|
68 |
|
simpr |
|
69 |
|
resubcl |
|
70 |
69
|
recnd |
|
71 |
70
|
abscld |
|
72 |
68 71
|
resubcld |
|
73 |
72
|
rexrd |
|
74 |
73
|
3adant3 |
|
75 |
68 71
|
readdcld |
|
76 |
75
|
rexrd |
|
77 |
76
|
3adant3 |
|
78 |
|
simp2 |
|
79 |
70
|
3adant3 |
|
80 |
|
recn |
|
81 |
80
|
3ad2ant1 |
|
82 |
78
|
recnd |
|
83 |
|
simp3 |
|
84 |
81 82 83
|
subne0d |
|
85 |
79 84
|
absrpcld |
|
86 |
78 85
|
ltsubrpd |
|
87 |
78 85
|
ltaddrpd |
|
88 |
74 77 78 86 87
|
eliood |
|
89 |
64 65 67 88
|
syl3anc |
|
90 |
63
|
recnd |
|
91 |
90
|
adantl |
|
92 |
65
|
recnd |
|
93 |
91 92
|
subcld |
|
94 |
93
|
abscld |
|
95 |
65 94
|
resubcld |
|
96 |
95
|
rexrd |
|
97 |
65 94
|
readdcld |
|
98 |
97
|
rexrd |
|
99 |
|
oveq1 |
|
100 |
99
|
eleq2d |
|
101 |
99
|
ineq1d |
|
102 |
101
|
neeq1d |
|
103 |
100 102
|
imbi12d |
|
104 |
|
oveq2 |
|
105 |
104
|
eleq2d |
|
106 |
104
|
ineq1d |
|
107 |
106
|
neeq1d |
|
108 |
105 107
|
imbi12d |
|
109 |
103 108
|
rspc2v |
|
110 |
96 98 109
|
syl2anc |
|
111 |
60 89 110
|
mp2d |
|
112 |
|
n0 |
|
113 |
111 112
|
sylib |
|
114 |
|
elinel2 |
|
115 |
114
|
eldifad |
|
116 |
115
|
adantl |
|
117 |
65
|
adantr |
|
118 |
64
|
adantr |
|
119 |
|
elinel1 |
|
120 |
119
|
adantl |
|
121 |
|
simpl1 |
|
122 |
|
simpl2 |
|
123 |
|
simpl3 |
|
124 |
|
simpr |
|
125 |
122 121
|
subge0d |
|
126 |
124 125
|
mpbid |
|
127 |
121 122 126
|
abssubge0d |
|
128 |
127
|
oveq2d |
|
129 |
127
|
oveq2d |
|
130 |
128 129
|
oveq12d |
|
131 |
123 130
|
eleqtrd |
|
132 |
|
elioore |
|
133 |
132
|
3ad2ant3 |
|
134 |
|
simpl |
|
135 |
69
|
ancoms |
|
136 |
134 135
|
resubcld |
|
137 |
136
|
rexrd |
|
138 |
137
|
3adant3 |
|
139 |
134 135
|
readdcld |
|
140 |
139
|
rexrd |
|
141 |
140
|
3adant3 |
|
142 |
|
simp3 |
|
143 |
|
iooltub |
|
144 |
138 141 142 143
|
syl3anc |
|
145 |
134
|
recnd |
|
146 |
80
|
adantl |
|
147 |
145 146
|
pncan3d |
|
148 |
147
|
3adant3 |
|
149 |
144 148
|
breqtrd |
|
150 |
133 149
|
gtned |
|
151 |
121 122 131 150
|
syl3anc |
|
152 |
|
simpl1 |
|
153 |
|
simpl2 |
|
154 |
|
simpl3 |
|
155 |
135
|
adantr |
|
156 |
|
0red |
|
157 |
|
simpr |
|
158 |
155 156
|
ltnled |
|
159 |
157 158
|
mpbird |
|
160 |
155 156 159
|
ltled |
|
161 |
155 160
|
absnidd |
|
162 |
146
|
adantr |
|
163 |
145
|
adantr |
|
164 |
162 163
|
negsubdi2d |
|
165 |
161 164
|
eqtrd |
|
166 |
165
|
oveq2d |
|
167 |
165
|
oveq2d |
|
168 |
166 167
|
oveq12d |
|
169 |
168
|
3adantl3 |
|
170 |
154 169
|
eleqtrd |
|
171 |
|
simp2 |
|
172 |
171
|
rexrd |
|
173 |
|
resubcl |
|
174 |
134 173
|
readdcld |
|
175 |
174
|
rexrd |
|
176 |
175
|
3adant3 |
|
177 |
|
simp3 |
|
178 |
145 146
|
nncand |
|
179 |
178
|
oveq1d |
|
180 |
179
|
3adant3 |
|
181 |
177 180
|
eleqtrd |
|
182 |
|
ioogtlb |
|
183 |
172 176 181 182
|
syl3anc |
|
184 |
171 183
|
ltned |
|
185 |
152 153 170 184
|
syl3anc |
|
186 |
151 185
|
pm2.61dan |
|
187 |
117 118 120 186
|
syl3anc |
|
188 |
63
|
adantr |
|
189 |
|
elioore |
|
190 |
119 189
|
syl |
|
191 |
190
|
adantl |
|
192 |
188 191
|
resubcld |
|
193 |
192
|
recnd |
|
194 |
193
|
adantll |
|
195 |
194
|
abscld |
|
196 |
195
|
adantllr |
|
197 |
94
|
adantr |
|
198 |
16
|
adantr |
|
199 |
190
|
adantl |
|
200 |
198 199
|
resubcld |
|
201 |
200
|
recnd |
|
202 |
201
|
abscld |
|
203 |
202
|
adantlr |
|
204 |
197 203
|
readdcld |
|
205 |
19
|
ad3antrrr |
|
206 |
118
|
recnd |
|
207 |
190
|
recnd |
|
208 |
207
|
adantl |
|
209 |
92
|
adantr |
|
210 |
206 208 209
|
abs3difd |
|
211 |
21
|
ad2antrr |
|
212 |
|
simpll |
|
213 |
61
|
adantl |
|
214 |
62 146
|
sylan2 |
|
215 |
62 145
|
sylan2 |
|
216 |
214 215
|
abssubd |
|
217 |
216
|
3adant1 |
|
218 |
|
simp2 |
|
219 |
19
|
rehalfcld |
|
220 |
219
|
3ad2ant1 |
|
221 |
|
simp3 |
|
222 |
218 220 221
|
iooabslt |
|
223 |
217 222
|
eqbrtrd |
|
224 |
212 65 213 223
|
syl3anc |
|
225 |
224
|
adantr |
|
226 |
212 65 213
|
3jca |
|
227 |
|
simpl |
|
228 |
189
|
adantl |
|
229 |
227 228
|
resubcld |
|
230 |
229
|
recnd |
|
231 |
230
|
abscld |
|
232 |
231
|
3ad2antl2 |
|
233 |
220
|
adantr |
|
234 |
214 215
|
subcld |
|
235 |
234
|
abscld |
|
236 |
235
|
3adant1 |
|
237 |
236
|
adantr |
|
238 |
|
simpl2 |
|
239 |
|
simpr |
|
240 |
238 237 239
|
iooabslt |
|
241 |
223
|
adantr |
|
242 |
232 237 233 240 241
|
lttrd |
|
243 |
232 233 242
|
ltled |
|
244 |
226 119 243
|
syl2an |
|
245 |
197 203 211 211 225 244
|
ltleaddd |
|
246 |
19
|
recnd |
|
247 |
246
|
2halvesd |
|
248 |
247
|
ad3antrrr |
|
249 |
245 248
|
breqtrd |
|
250 |
196 204 205 210 249
|
lelttrd |
|
251 |
116 187 250
|
jca32 |
|
252 |
251
|
ex |
|
253 |
252
|
eximdv |
|
254 |
113 253
|
mpd |
|
255 |
|
df-rex |
|
256 |
254 255
|
sylibr |
|
257 |
256
|
ex |
|
258 |
257
|
reximdv |
|
259 |
59 258
|
mpd |
|
260 |
6 259
|
exlimddv |
|