Metamath Proof Explorer


Theorem lpval

Description: The set of limit points of a subset of the base set of a topology. Alternate definition of limit point in Munkres p. 97. (Contributed by NM, 10-Feb-2007) (Revised by Mario Carneiro, 11-Nov-2013)

Ref Expression
Hypothesis lpfval.1 X = J
Assertion lpval J Top S X limPt J S = x | x cls J S x

Proof

Step Hyp Ref Expression
1 lpfval.1 X = J
2 1 lpfval J Top limPt J = y 𝒫 X x | x cls J y x
3 2 fveq1d J Top limPt J S = y 𝒫 X x | x cls J y x S
4 3 adantr J Top S X limPt J S = y 𝒫 X x | x cls J y x S
5 eqid y 𝒫 X x | x cls J y x = y 𝒫 X x | x cls J y x
6 difeq1 y = S y x = S x
7 6 fveq2d y = S cls J y x = cls J S x
8 7 eleq2d y = S x cls J y x x cls J S x
9 8 abbidv y = S x | x cls J y x = x | x cls J S x
10 1 topopn J Top X J
11 elpw2g X J S 𝒫 X S X
12 10 11 syl J Top S 𝒫 X S X
13 12 biimpar J Top S X S 𝒫 X
14 10 adantr J Top S X X J
15 ssdifss S X S x X
16 1 clsss3 J Top S x X cls J S x X
17 16 sseld J Top S x X x cls J S x x X
18 15 17 sylan2 J Top S X x cls J S x x X
19 18 abssdv J Top S X x | x cls J S x X
20 14 19 ssexd J Top S X x | x cls J S x V
21 5 9 13 20 fvmptd3 J Top S X y 𝒫 X x | x cls J y x S = x | x cls J S x
22 4 21 eqtrd J Top S X limPt J S = x | x cls J S x