Metamath Proof Explorer


Theorem lpvtx

Description: The endpoints of a loop (which is an edge at index J ) are two (identical) vertices A . (Contributed by AV, 1-Feb-2021)

Ref Expression
Hypothesis lpvtx.i I = iEdg G
Assertion lpvtx G UHGraph J dom I I J = A A Vtx G

Proof

Step Hyp Ref Expression
1 lpvtx.i I = iEdg G
2 simp1 G UHGraph J dom I I J = A G UHGraph
3 1 uhgrfun G UHGraph Fun I
4 3 funfnd G UHGraph I Fn dom I
5 4 3ad2ant1 G UHGraph J dom I I J = A I Fn dom I
6 simp2 G UHGraph J dom I I J = A J dom I
7 1 uhgrn0 G UHGraph I Fn dom I J dom I I J
8 2 5 6 7 syl3anc G UHGraph J dom I I J = A I J
9 neeq1 I J = A I J A
10 9 biimpd I J = A I J A
11 10 3ad2ant3 G UHGraph J dom I I J = A I J A
12 8 11 mpd G UHGraph J dom I I J = A A
13 eqid Vtx G = Vtx G
14 13 1 uhgrss G UHGraph J dom I I J Vtx G
15 14 3adant3 G UHGraph J dom I I J = A I J Vtx G
16 sseq1 I J = A I J Vtx G A Vtx G
17 16 3ad2ant3 G UHGraph J dom I I J = A I J Vtx G A Vtx G
18 15 17 mpbid G UHGraph J dom I I J = A A Vtx G
19 snnzb A V A
20 snssg A V A Vtx G A Vtx G
21 19 20 sylbir A A Vtx G A Vtx G
22 18 21 syl5ibrcom G UHGraph J dom I I J = A A A Vtx G
23 12 22 mpd G UHGraph J dom I I J = A A Vtx G