Metamath Proof Explorer


Theorem lrcut

Description: A surreal is equal to the cut of its left and right sets. (Contributed by Scott Fenton, 19-Aug-2024)

Ref Expression
Assertion lrcut Could not format assertion : No typesetting found for |- ( X e. No -> ( ( _Left ` X ) |s ( _Right ` X ) ) = X ) with typecode |-

Proof

Step Hyp Ref Expression
1 bdayelon bday X On
2 1 oneli b bday X b On
3 madebday Could not format ( ( b e. On /\ y e. No ) -> ( y e. ( _Made ` b ) <-> ( bday ` y ) C_ b ) ) : No typesetting found for |- ( ( b e. On /\ y e. No ) -> ( y e. ( _Made ` b ) <-> ( bday ` y ) C_ b ) ) with typecode |-
4 3 biimprd Could not format ( ( b e. On /\ y e. No ) -> ( ( bday ` y ) C_ b -> y e. ( _Made ` b ) ) ) : No typesetting found for |- ( ( b e. On /\ y e. No ) -> ( ( bday ` y ) C_ b -> y e. ( _Made ` b ) ) ) with typecode |-
5 2 4 sylan Could not format ( ( b e. ( bday ` X ) /\ y e. No ) -> ( ( bday ` y ) C_ b -> y e. ( _Made ` b ) ) ) : No typesetting found for |- ( ( b e. ( bday ` X ) /\ y e. No ) -> ( ( bday ` y ) C_ b -> y e. ( _Made ` b ) ) ) with typecode |-
6 5 rgen2 Could not format A. b e. ( bday ` X ) A. y e. No ( ( bday ` y ) C_ b -> y e. ( _Made ` b ) ) : No typesetting found for |- A. b e. ( bday ` X ) A. y e. No ( ( bday ` y ) C_ b -> y e. ( _Made ` b ) ) with typecode |-
7 madebdaylemlrcut Could not format ( ( A. b e. ( bday ` X ) A. y e. No ( ( bday ` y ) C_ b -> y e. ( _Made ` b ) ) /\ X e. No ) -> ( ( _Left ` X ) |s ( _Right ` X ) ) = X ) : No typesetting found for |- ( ( A. b e. ( bday ` X ) A. y e. No ( ( bday ` y ) C_ b -> y e. ( _Made ` b ) ) /\ X e. No ) -> ( ( _Left ` X ) |s ( _Right ` X ) ) = X ) with typecode |-
8 6 7 mpan Could not format ( X e. No -> ( ( _Left ` X ) |s ( _Right ` X ) ) = X ) : No typesetting found for |- ( X e. No -> ( ( _Left ` X ) |s ( _Right ` X ) ) = X ) with typecode |-