Metamath Proof Explorer


Theorem lsatspn0

Description: The span of a vector is an atom iff the vector is nonzero. (Contributed by NM, 4-Feb-2015)

Ref Expression
Hypotheses lsatspn0.v V = Base W
lsatspn0.n N = LSpan W
lsatspn0.o 0 ˙ = 0 W
lsatspn0.a A = LSAtoms W
isateln0.w φ W LMod
isateln0.x φ X V
Assertion lsatspn0 φ N X A X 0 ˙

Proof

Step Hyp Ref Expression
1 lsatspn0.v V = Base W
2 lsatspn0.n N = LSpan W
3 lsatspn0.o 0 ˙ = 0 W
4 lsatspn0.a A = LSAtoms W
5 isateln0.w φ W LMod
6 isateln0.x φ X V
7 5 adantr φ N X A W LMod
8 simpr φ N X A N X A
9 3 4 7 8 lsatn0 φ N X A N X 0 ˙
10 sneq X = 0 ˙ X = 0 ˙
11 10 fveq2d X = 0 ˙ N X = N 0 ˙
12 11 adantl φ N X A X = 0 ˙ N X = N 0 ˙
13 7 adantr φ N X A X = 0 ˙ W LMod
14 3 2 lspsn0 W LMod N 0 ˙ = 0 ˙
15 13 14 syl φ N X A X = 0 ˙ N 0 ˙ = 0 ˙
16 12 15 eqtrd φ N X A X = 0 ˙ N X = 0 ˙
17 16 ex φ N X A X = 0 ˙ N X = 0 ˙
18 17 necon3d φ N X A N X 0 ˙ X 0 ˙
19 9 18 mpd φ N X A X 0 ˙
20 5 adantr φ X 0 ˙ W LMod
21 6 adantr φ X 0 ˙ X V
22 simpr φ X 0 ˙ X 0 ˙
23 eldifsn X V 0 ˙ X V X 0 ˙
24 21 22 23 sylanbrc φ X 0 ˙ X V 0 ˙
25 1 2 3 4 20 24 lsatlspsn φ X 0 ˙ N X A
26 19 25 impbida φ N X A X 0 ˙