| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lsmub1.p |
|
| 2 |
|
eqid |
|
| 3 |
|
eqid |
|
| 4 |
2 3 1
|
lsmval |
|
| 5 |
4
|
3adant3 |
|
| 6 |
5
|
rexeqdv |
|
| 7 |
|
ovex |
|
| 8 |
7
|
rgen2w |
|
| 9 |
|
eqid |
|
| 10 |
|
oveq1 |
|
| 11 |
10
|
eqeq2d |
|
| 12 |
11
|
rexbidv |
|
| 13 |
9 12
|
rexrnmpo |
|
| 14 |
8 13
|
ax-mp |
|
| 15 |
6 14
|
bitrdi |
|
| 16 |
2 3 1
|
lsmval |
|
| 17 |
16
|
3adant1 |
|
| 18 |
17
|
rexeqdv |
|
| 19 |
|
ovex |
|
| 20 |
19
|
rgen2w |
|
| 21 |
|
eqid |
|
| 22 |
|
oveq2 |
|
| 23 |
22
|
eqeq2d |
|
| 24 |
21 23
|
rexrnmpo |
|
| 25 |
20 24
|
ax-mp |
|
| 26 |
18 25
|
bitrdi |
|
| 27 |
26
|
adantr |
|
| 28 |
|
subgrcl |
|
| 29 |
28
|
3ad2ant1 |
|
| 30 |
29
|
ad2antrr |
|
| 31 |
2
|
subgss |
|
| 32 |
31
|
3ad2ant1 |
|
| 33 |
32
|
ad2antrr |
|
| 34 |
|
simplr |
|
| 35 |
33 34
|
sseldd |
|
| 36 |
2
|
subgss |
|
| 37 |
36
|
3ad2ant2 |
|
| 38 |
37
|
ad2antrr |
|
| 39 |
|
simprl |
|
| 40 |
38 39
|
sseldd |
|
| 41 |
2
|
subgss |
|
| 42 |
41
|
3ad2ant3 |
|
| 43 |
42
|
ad2antrr |
|
| 44 |
|
simprr |
|
| 45 |
43 44
|
sseldd |
|
| 46 |
2 3
|
grpass |
|
| 47 |
30 35 40 45 46
|
syl13anc |
|
| 48 |
47
|
eqeq2d |
|
| 49 |
48
|
2rexbidva |
|
| 50 |
27 49
|
bitr4d |
|
| 51 |
50
|
rexbidva |
|
| 52 |
15 51
|
bitr4d |
|
| 53 |
29
|
grpmndd |
|
| 54 |
2 1
|
lsmssv |
|
| 55 |
53 32 37 54
|
syl3anc |
|
| 56 |
2 3 1
|
lsmelvalx |
|
| 57 |
29 55 42 56
|
syl3anc |
|
| 58 |
2 1
|
lsmssv |
|
| 59 |
53 37 42 58
|
syl3anc |
|
| 60 |
2 3 1
|
lsmelvalx |
|
| 61 |
29 32 59 60
|
syl3anc |
|
| 62 |
52 57 61
|
3bitr4d |
|
| 63 |
62
|
eqrdv |
|