Metamath Proof Explorer


Theorem lsmcntz

Description: The "subgroups commute" predicate applied to a subgroup sum. (Contributed by Mario Carneiro, 21-Apr-2016)

Ref Expression
Hypotheses lsmcntz.p ˙ = LSSum G
lsmcntz.s φ S SubGrp G
lsmcntz.t φ T SubGrp G
lsmcntz.u φ U SubGrp G
lsmcntz.z Z = Cntz G
Assertion lsmcntz φ S ˙ T Z U S Z U T Z U

Proof

Step Hyp Ref Expression
1 lsmcntz.p ˙ = LSSum G
2 lsmcntz.s φ S SubGrp G
3 lsmcntz.t φ T SubGrp G
4 lsmcntz.u φ U SubGrp G
5 lsmcntz.z Z = Cntz G
6 subgrcl U SubGrp G G Grp
7 eqid Base G = Base G
8 7 subgss U SubGrp G U Base G
9 7 5 cntzsubg G Grp U Base G Z U SubGrp G
10 6 8 9 syl2anc U SubGrp G Z U SubGrp G
11 4 10 syl φ Z U SubGrp G
12 1 lsmlub S SubGrp G T SubGrp G Z U SubGrp G S Z U T Z U S ˙ T Z U
13 2 3 11 12 syl3anc φ S Z U T Z U S ˙ T Z U
14 13 bicomd φ S ˙ T Z U S Z U T Z U