Metamath Proof Explorer


Theorem lsmcom2

Description: Subgroup sum commutes. (Contributed by Mario Carneiro, 22-Apr-2016)

Ref Expression
Hypotheses lsmsubg.p ˙ = LSSum G
lsmsubg.z Z = Cntz G
Assertion lsmcom2 T SubGrp G U SubGrp G T Z U T ˙ U = U ˙ T

Proof

Step Hyp Ref Expression
1 lsmsubg.p ˙ = LSSum G
2 lsmsubg.z Z = Cntz G
3 simp3 T SubGrp G U SubGrp G T Z U T Z U
4 3 sselda T SubGrp G U SubGrp G T Z U a T a Z U
5 4 adantrr T SubGrp G U SubGrp G T Z U a T b U a Z U
6 simprr T SubGrp G U SubGrp G T Z U a T b U b U
7 eqid + G = + G
8 7 2 cntzi a Z U b U a + G b = b + G a
9 5 6 8 syl2anc T SubGrp G U SubGrp G T Z U a T b U a + G b = b + G a
10 9 eqeq2d T SubGrp G U SubGrp G T Z U a T b U x = a + G b x = b + G a
11 10 2rexbidva T SubGrp G U SubGrp G T Z U a T b U x = a + G b a T b U x = b + G a
12 rexcom a T b U x = b + G a b U a T x = b + G a
13 11 12 bitrdi T SubGrp G U SubGrp G T Z U a T b U x = a + G b b U a T x = b + G a
14 7 1 lsmelval T SubGrp G U SubGrp G x T ˙ U a T b U x = a + G b
15 14 3adant3 T SubGrp G U SubGrp G T Z U x T ˙ U a T b U x = a + G b
16 7 1 lsmelval U SubGrp G T SubGrp G x U ˙ T b U a T x = b + G a
17 16 ancoms T SubGrp G U SubGrp G x U ˙ T b U a T x = b + G a
18 17 3adant3 T SubGrp G U SubGrp G T Z U x U ˙ T b U a T x = b + G a
19 13 15 18 3bitr4d T SubGrp G U SubGrp G T Z U x T ˙ U x U ˙ T
20 19 eqrdv T SubGrp G U SubGrp G T Z U T ˙ U = U ˙ T