| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lsmcntz.p |
|
| 2 |
|
lsmcntz.s |
|
| 3 |
|
lsmcntz.t |
|
| 4 |
|
lsmcntz.u |
|
| 5 |
|
lsmdisj.o |
|
| 6 |
|
lsmdisj.i |
|
| 7 |
1
|
lsmub1 |
|
| 8 |
2 3 7
|
syl2anc |
|
| 9 |
8
|
ssrind |
|
| 10 |
9 6
|
sseqtrd |
|
| 11 |
5
|
subg0cl |
|
| 12 |
2 11
|
syl |
|
| 13 |
5
|
subg0cl |
|
| 14 |
4 13
|
syl |
|
| 15 |
12 14
|
elind |
|
| 16 |
15
|
snssd |
|
| 17 |
10 16
|
eqssd |
|
| 18 |
1
|
lsmub2 |
|
| 19 |
2 3 18
|
syl2anc |
|
| 20 |
19
|
ssrind |
|
| 21 |
20 6
|
sseqtrd |
|
| 22 |
5
|
subg0cl |
|
| 23 |
3 22
|
syl |
|
| 24 |
23 14
|
elind |
|
| 25 |
24
|
snssd |
|
| 26 |
21 25
|
eqssd |
|
| 27 |
17 26
|
jca |
|