Metamath Proof Explorer


Theorem lsmdisj2

Description: Association of the disjointness constraint in a subgroup sum. (Contributed by Mario Carneiro, 22-Apr-2016)

Ref Expression
Hypotheses lsmcntz.p ˙ = LSSum G
lsmcntz.s φ S SubGrp G
lsmcntz.t φ T SubGrp G
lsmcntz.u φ U SubGrp G
lsmdisj.o 0 ˙ = 0 G
lsmdisj.i φ S ˙ T U = 0 ˙
lsmdisj2.i φ S T = 0 ˙
Assertion lsmdisj2 φ T S ˙ U = 0 ˙

Proof

Step Hyp Ref Expression
1 lsmcntz.p ˙ = LSSum G
2 lsmcntz.s φ S SubGrp G
3 lsmcntz.t φ T SubGrp G
4 lsmcntz.u φ U SubGrp G
5 lsmdisj.o 0 ˙ = 0 G
6 lsmdisj.i φ S ˙ T U = 0 ˙
7 lsmdisj2.i φ S T = 0 ˙
8 eqid + G = + G
9 8 1 lsmelval S SubGrp G U SubGrp G x S ˙ U s S u U x = s + G u
10 2 4 9 syl2anc φ x S ˙ U s S u U x = s + G u
11 simplrl φ s S u U s + G u T s S
12 subgrcl S SubGrp G G Grp
13 2 12 syl φ G Grp
14 13 ad2antrr φ s S u U s + G u T G Grp
15 2 ad2antrr φ s S u U s + G u T S SubGrp G
16 eqid Base G = Base G
17 16 subgss S SubGrp G S Base G
18 15 17 syl φ s S u U s + G u T S Base G
19 18 11 sseldd φ s S u U s + G u T s Base G
20 eqid inv g G = inv g G
21 16 8 5 20 grplinv G Grp s Base G inv g G s + G s = 0 ˙
22 14 19 21 syl2anc φ s S u U s + G u T inv g G s + G s = 0 ˙
23 22 oveq1d φ s S u U s + G u T inv g G s + G s + G u = 0 ˙ + G u
24 20 subginvcl S SubGrp G s S inv g G s S
25 15 11 24 syl2anc φ s S u U s + G u T inv g G s S
26 18 25 sseldd φ s S u U s + G u T inv g G s Base G
27 4 ad2antrr φ s S u U s + G u T U SubGrp G
28 16 subgss U SubGrp G U Base G
29 27 28 syl φ s S u U s + G u T U Base G
30 simplrr φ s S u U s + G u T u U
31 29 30 sseldd φ s S u U s + G u T u Base G
32 16 8 grpass G Grp inv g G s Base G s Base G u Base G inv g G s + G s + G u = inv g G s + G s + G u
33 14 26 19 31 32 syl13anc φ s S u U s + G u T inv g G s + G s + G u = inv g G s + G s + G u
34 16 8 5 grplid G Grp u Base G 0 ˙ + G u = u
35 14 31 34 syl2anc φ s S u U s + G u T 0 ˙ + G u = u
36 23 33 35 3eqtr3d φ s S u U s + G u T inv g G s + G s + G u = u
37 3 ad2antrr φ s S u U s + G u T T SubGrp G
38 simpr φ s S u U s + G u T s + G u T
39 8 1 lsmelvali S SubGrp G T SubGrp G inv g G s S s + G u T inv g G s + G s + G u S ˙ T
40 15 37 25 38 39 syl22anc φ s S u U s + G u T inv g G s + G s + G u S ˙ T
41 36 40 eqeltrrd φ s S u U s + G u T u S ˙ T
42 41 30 elind φ s S u U s + G u T u S ˙ T U
43 6 ad2antrr φ s S u U s + G u T S ˙ T U = 0 ˙
44 42 43 eleqtrd φ s S u U s + G u T u 0 ˙
45 elsni u 0 ˙ u = 0 ˙
46 44 45 syl φ s S u U s + G u T u = 0 ˙
47 46 oveq2d φ s S u U s + G u T s + G u = s + G 0 ˙
48 16 8 5 grprid G Grp s Base G s + G 0 ˙ = s
49 14 19 48 syl2anc φ s S u U s + G u T s + G 0 ˙ = s
50 47 49 eqtrd φ s S u U s + G u T s + G u = s
51 50 38 eqeltrrd φ s S u U s + G u T s T
52 11 51 elind φ s S u U s + G u T s S T
53 7 ad2antrr φ s S u U s + G u T S T = 0 ˙
54 52 53 eleqtrd φ s S u U s + G u T s 0 ˙
55 elsni s 0 ˙ s = 0 ˙
56 54 55 syl φ s S u U s + G u T s = 0 ˙
57 56 46 oveq12d φ s S u U s + G u T s + G u = 0 ˙ + G 0 ˙
58 16 5 grpidcl G Grp 0 ˙ Base G
59 16 8 5 grplid G Grp 0 ˙ Base G 0 ˙ + G 0 ˙ = 0 ˙
60 13 58 59 syl2anc2 φ 0 ˙ + G 0 ˙ = 0 ˙
61 60 ad2antrr φ s S u U s + G u T 0 ˙ + G 0 ˙ = 0 ˙
62 57 61 eqtrd φ s S u U s + G u T s + G u = 0 ˙
63 62 ex φ s S u U s + G u T s + G u = 0 ˙
64 eleq1 x = s + G u x T s + G u T
65 eqeq1 x = s + G u x = 0 ˙ s + G u = 0 ˙
66 64 65 imbi12d x = s + G u x T x = 0 ˙ s + G u T s + G u = 0 ˙
67 63 66 syl5ibrcom φ s S u U x = s + G u x T x = 0 ˙
68 67 rexlimdvva φ s S u U x = s + G u x T x = 0 ˙
69 10 68 sylbid φ x S ˙ U x T x = 0 ˙
70 69 impcomd φ x T x S ˙ U x = 0 ˙
71 elin x T S ˙ U x T x S ˙ U
72 velsn x 0 ˙ x = 0 ˙
73 70 71 72 3imtr4g φ x T S ˙ U x 0 ˙
74 73 ssrdv φ T S ˙ U 0 ˙
75 5 subg0cl T SubGrp G 0 ˙ T
76 3 75 syl φ 0 ˙ T
77 1 lsmub1 S SubGrp G U SubGrp G S S ˙ U
78 2 4 77 syl2anc φ S S ˙ U
79 5 subg0cl S SubGrp G 0 ˙ S
80 2 79 syl φ 0 ˙ S
81 78 80 sseldd φ 0 ˙ S ˙ U
82 76 81 elind φ 0 ˙ T S ˙ U
83 82 snssd φ 0 ˙ T S ˙ U
84 74 83 eqssd φ T S ˙ U = 0 ˙