Step |
Hyp |
Ref |
Expression |
1 |
|
lsmcntz.p |
|
2 |
|
lsmcntz.s |
|
3 |
|
lsmcntz.t |
|
4 |
|
lsmcntz.u |
|
5 |
|
lsmdisj.o |
|
6 |
|
lsmdisj.i |
|
7 |
|
lsmdisj2.i |
|
8 |
|
eqid |
|
9 |
8 1
|
lsmelval |
|
10 |
2 4 9
|
syl2anc |
|
11 |
|
simplrl |
|
12 |
|
subgrcl |
|
13 |
2 12
|
syl |
|
14 |
13
|
ad2antrr |
|
15 |
2
|
ad2antrr |
|
16 |
|
eqid |
|
17 |
16
|
subgss |
|
18 |
15 17
|
syl |
|
19 |
18 11
|
sseldd |
|
20 |
|
eqid |
|
21 |
16 8 5 20
|
grplinv |
|
22 |
14 19 21
|
syl2anc |
|
23 |
22
|
oveq1d |
|
24 |
20
|
subginvcl |
|
25 |
15 11 24
|
syl2anc |
|
26 |
18 25
|
sseldd |
|
27 |
4
|
ad2antrr |
|
28 |
16
|
subgss |
|
29 |
27 28
|
syl |
|
30 |
|
simplrr |
|
31 |
29 30
|
sseldd |
|
32 |
16 8
|
grpass |
|
33 |
14 26 19 31 32
|
syl13anc |
|
34 |
16 8 5
|
grplid |
|
35 |
14 31 34
|
syl2anc |
|
36 |
23 33 35
|
3eqtr3d |
|
37 |
3
|
ad2antrr |
|
38 |
|
simpr |
|
39 |
8 1
|
lsmelvali |
|
40 |
15 37 25 38 39
|
syl22anc |
|
41 |
36 40
|
eqeltrrd |
|
42 |
41 30
|
elind |
|
43 |
6
|
ad2antrr |
|
44 |
42 43
|
eleqtrd |
|
45 |
|
elsni |
|
46 |
44 45
|
syl |
|
47 |
46
|
oveq2d |
|
48 |
16 8 5
|
grprid |
|
49 |
14 19 48
|
syl2anc |
|
50 |
47 49
|
eqtrd |
|
51 |
50 38
|
eqeltrrd |
|
52 |
11 51
|
elind |
|
53 |
7
|
ad2antrr |
|
54 |
52 53
|
eleqtrd |
|
55 |
|
elsni |
|
56 |
54 55
|
syl |
|
57 |
56 46
|
oveq12d |
|
58 |
16 5
|
grpidcl |
|
59 |
16 8 5
|
grplid |
|
60 |
13 58 59
|
syl2anc2 |
|
61 |
60
|
ad2antrr |
|
62 |
57 61
|
eqtrd |
|
63 |
62
|
ex |
|
64 |
|
eleq1 |
|
65 |
|
eqeq1 |
|
66 |
64 65
|
imbi12d |
|
67 |
63 66
|
syl5ibrcom |
|
68 |
67
|
rexlimdvva |
|
69 |
10 68
|
sylbid |
|
70 |
69
|
impcomd |
|
71 |
|
elin |
|
72 |
|
velsn |
|
73 |
70 71 72
|
3imtr4g |
|
74 |
73
|
ssrdv |
|
75 |
5
|
subg0cl |
|
76 |
3 75
|
syl |
|
77 |
1
|
lsmub1 |
|
78 |
2 4 77
|
syl2anc |
|
79 |
5
|
subg0cl |
|
80 |
2 79
|
syl |
|
81 |
78 80
|
sseldd |
|
82 |
76 81
|
elind |
|
83 |
82
|
snssd |
|
84 |
74 83
|
eqssd |
|