| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lsmcntz.p |
|
| 2 |
|
lsmcntz.s |
|
| 3 |
|
lsmcntz.t |
|
| 4 |
|
lsmcntz.u |
|
| 5 |
|
lsmdisj.o |
|
| 6 |
2
|
adantr |
|
| 7 |
3
|
adantr |
|
| 8 |
4
|
adantr |
|
| 9 |
|
simprl |
|
| 10 |
|
simprr |
|
| 11 |
1 6 7 8 5 9 10
|
lsmdisj2 |
|
| 12 |
1 6 7 8 5 9
|
lsmdisj |
|
| 13 |
12
|
simpld |
|
| 14 |
11 13
|
jca |
|
| 15 |
|
incom |
|
| 16 |
2
|
adantr |
|
| 17 |
4
|
adantr |
|
| 18 |
3
|
adantr |
|
| 19 |
|
incom |
|
| 20 |
|
simprl |
|
| 21 |
19 20
|
eqtrid |
|
| 22 |
|
simprr |
|
| 23 |
1 16 17 18 5 21 22
|
lsmdisj2 |
|
| 24 |
15 23
|
eqtrid |
|
| 25 |
|
incom |
|
| 26 |
1 18 16 17 5 20
|
lsmdisjr |
|
| 27 |
26
|
simpld |
|
| 28 |
25 27
|
eqtrid |
|
| 29 |
24 28
|
jca |
|
| 30 |
14 29
|
impbida |
|