Metamath Proof Explorer


Theorem lsmdisj2a

Description: Association of the disjointness constraint in a subgroup sum. (Contributed by Mario Carneiro, 21-Apr-2016)

Ref Expression
Hypotheses lsmcntz.p ˙ = LSSum G
lsmcntz.s φ S SubGrp G
lsmcntz.t φ T SubGrp G
lsmcntz.u φ U SubGrp G
lsmdisj.o 0 ˙ = 0 G
Assertion lsmdisj2a φ S ˙ T U = 0 ˙ S T = 0 ˙ T S ˙ U = 0 ˙ S U = 0 ˙

Proof

Step Hyp Ref Expression
1 lsmcntz.p ˙ = LSSum G
2 lsmcntz.s φ S SubGrp G
3 lsmcntz.t φ T SubGrp G
4 lsmcntz.u φ U SubGrp G
5 lsmdisj.o 0 ˙ = 0 G
6 2 adantr φ S ˙ T U = 0 ˙ S T = 0 ˙ S SubGrp G
7 3 adantr φ S ˙ T U = 0 ˙ S T = 0 ˙ T SubGrp G
8 4 adantr φ S ˙ T U = 0 ˙ S T = 0 ˙ U SubGrp G
9 simprl φ S ˙ T U = 0 ˙ S T = 0 ˙ S ˙ T U = 0 ˙
10 simprr φ S ˙ T U = 0 ˙ S T = 0 ˙ S T = 0 ˙
11 1 6 7 8 5 9 10 lsmdisj2 φ S ˙ T U = 0 ˙ S T = 0 ˙ T S ˙ U = 0 ˙
12 1 6 7 8 5 9 lsmdisj φ S ˙ T U = 0 ˙ S T = 0 ˙ S U = 0 ˙ T U = 0 ˙
13 12 simpld φ S ˙ T U = 0 ˙ S T = 0 ˙ S U = 0 ˙
14 11 13 jca φ S ˙ T U = 0 ˙ S T = 0 ˙ T S ˙ U = 0 ˙ S U = 0 ˙
15 incom S ˙ T U = U S ˙ T
16 2 adantr φ T S ˙ U = 0 ˙ S U = 0 ˙ S SubGrp G
17 4 adantr φ T S ˙ U = 0 ˙ S U = 0 ˙ U SubGrp G
18 3 adantr φ T S ˙ U = 0 ˙ S U = 0 ˙ T SubGrp G
19 incom S ˙ U T = T S ˙ U
20 simprl φ T S ˙ U = 0 ˙ S U = 0 ˙ T S ˙ U = 0 ˙
21 19 20 eqtrid φ T S ˙ U = 0 ˙ S U = 0 ˙ S ˙ U T = 0 ˙
22 simprr φ T S ˙ U = 0 ˙ S U = 0 ˙ S U = 0 ˙
23 1 16 17 18 5 21 22 lsmdisj2 φ T S ˙ U = 0 ˙ S U = 0 ˙ U S ˙ T = 0 ˙
24 15 23 eqtrid φ T S ˙ U = 0 ˙ S U = 0 ˙ S ˙ T U = 0 ˙
25 incom S T = T S
26 1 18 16 17 5 20 lsmdisjr φ T S ˙ U = 0 ˙ S U = 0 ˙ T S = 0 ˙ T U = 0 ˙
27 26 simpld φ T S ˙ U = 0 ˙ S U = 0 ˙ T S = 0 ˙
28 25 27 eqtrid φ T S ˙ U = 0 ˙ S U = 0 ˙ S T = 0 ˙
29 24 28 jca φ T S ˙ U = 0 ˙ S U = 0 ˙ S ˙ T U = 0 ˙ S T = 0 ˙
30 14 29 impbida φ S ˙ T U = 0 ˙ S T = 0 ˙ T S ˙ U = 0 ˙ S U = 0 ˙