Metamath Proof Explorer


Theorem lsmdisj2a

Description: Association of the disjointness constraint in a subgroup sum. (Contributed by Mario Carneiro, 21-Apr-2016)

Ref Expression
Hypotheses lsmcntz.p ˙=LSSumG
lsmcntz.s φSSubGrpG
lsmcntz.t φTSubGrpG
lsmcntz.u φUSubGrpG
lsmdisj.o 0˙=0G
Assertion lsmdisj2a φS˙TU=0˙ST=0˙TS˙U=0˙SU=0˙

Proof

Step Hyp Ref Expression
1 lsmcntz.p ˙=LSSumG
2 lsmcntz.s φSSubGrpG
3 lsmcntz.t φTSubGrpG
4 lsmcntz.u φUSubGrpG
5 lsmdisj.o 0˙=0G
6 2 adantr φS˙TU=0˙ST=0˙SSubGrpG
7 3 adantr φS˙TU=0˙ST=0˙TSubGrpG
8 4 adantr φS˙TU=0˙ST=0˙USubGrpG
9 simprl φS˙TU=0˙ST=0˙S˙TU=0˙
10 simprr φS˙TU=0˙ST=0˙ST=0˙
11 1 6 7 8 5 9 10 lsmdisj2 φS˙TU=0˙ST=0˙TS˙U=0˙
12 1 6 7 8 5 9 lsmdisj φS˙TU=0˙ST=0˙SU=0˙TU=0˙
13 12 simpld φS˙TU=0˙ST=0˙SU=0˙
14 11 13 jca φS˙TU=0˙ST=0˙TS˙U=0˙SU=0˙
15 incom S˙TU=US˙T
16 2 adantr φTS˙U=0˙SU=0˙SSubGrpG
17 4 adantr φTS˙U=0˙SU=0˙USubGrpG
18 3 adantr φTS˙U=0˙SU=0˙TSubGrpG
19 incom S˙UT=TS˙U
20 simprl φTS˙U=0˙SU=0˙TS˙U=0˙
21 19 20 eqtrid φTS˙U=0˙SU=0˙S˙UT=0˙
22 simprr φTS˙U=0˙SU=0˙SU=0˙
23 1 16 17 18 5 21 22 lsmdisj2 φTS˙U=0˙SU=0˙US˙T=0˙
24 15 23 eqtrid φTS˙U=0˙SU=0˙S˙TU=0˙
25 incom ST=TS
26 1 18 16 17 5 20 lsmdisjr φTS˙U=0˙SU=0˙TS=0˙TU=0˙
27 26 simpld φTS˙U=0˙SU=0˙TS=0˙
28 25 27 eqtrid φTS˙U=0˙SU=0˙ST=0˙
29 24 28 jca φTS˙U=0˙SU=0˙S˙TU=0˙ST=0˙
30 14 29 impbida φS˙TU=0˙ST=0˙TS˙U=0˙SU=0˙