Step |
Hyp |
Ref |
Expression |
1 |
|
lsmcntz.p |
|
2 |
|
lsmcntz.s |
|
3 |
|
lsmcntz.t |
|
4 |
|
lsmcntz.u |
|
5 |
|
lsmdisj.o |
|
6 |
2
|
adantr |
|
7 |
3
|
adantr |
|
8 |
4
|
adantr |
|
9 |
|
simprl |
|
10 |
|
simprr |
|
11 |
1 6 7 8 5 9 10
|
lsmdisj2 |
|
12 |
1 6 7 8 5 9
|
lsmdisj |
|
13 |
12
|
simpld |
|
14 |
11 13
|
jca |
|
15 |
|
incom |
|
16 |
2
|
adantr |
|
17 |
4
|
adantr |
|
18 |
3
|
adantr |
|
19 |
|
incom |
|
20 |
|
simprl |
|
21 |
19 20
|
eqtrid |
|
22 |
|
simprr |
|
23 |
1 16 17 18 5 21 22
|
lsmdisj2 |
|
24 |
15 23
|
eqtrid |
|
25 |
|
incom |
|
26 |
1 18 16 17 5 20
|
lsmdisjr |
|
27 |
26
|
simpld |
|
28 |
25 27
|
eqtrid |
|
29 |
24 28
|
jca |
|
30 |
14 29
|
impbida |
|