Step |
Hyp |
Ref |
Expression |
1 |
|
lsmcntz.p |
|
2 |
|
lsmcntz.s |
|
3 |
|
lsmcntz.t |
|
4 |
|
lsmcntz.u |
|
5 |
|
lsmdisj.o |
|
6 |
|
incom |
|
7 |
3
|
adantr |
|
8 |
2
|
adantr |
|
9 |
4
|
adantr |
|
10 |
|
incom |
|
11 |
|
simprl |
|
12 |
10 11
|
eqtrid |
|
13 |
|
simprr |
|
14 |
1 7 8 9 5 12 13
|
lsmdisj2r |
|
15 |
6 14
|
eqtrid |
|
16 |
|
incom |
|
17 |
1 8 9 7 5 11
|
lsmdisj |
|
18 |
17
|
simprd |
|
19 |
16 18
|
eqtrid |
|
20 |
15 19
|
jca |
|
21 |
2
|
adantr |
|
22 |
3
|
adantr |
|
23 |
4
|
adantr |
|
24 |
|
simprl |
|
25 |
|
simprr |
|
26 |
1 21 22 23 5 24 25
|
lsmdisj2r |
|
27 |
1 21 22 23 5 24
|
lsmdisjr |
|
28 |
27
|
simprd |
|
29 |
26 28
|
jca |
|
30 |
20 29
|
impbida |
|