| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lsmcntz.p |
|
| 2 |
|
lsmcntz.s |
|
| 3 |
|
lsmcntz.t |
|
| 4 |
|
lsmcntz.u |
|
| 5 |
|
lsmdisj.o |
|
| 6 |
|
incom |
|
| 7 |
3
|
adantr |
|
| 8 |
2
|
adantr |
|
| 9 |
4
|
adantr |
|
| 10 |
|
incom |
|
| 11 |
|
simprl |
|
| 12 |
10 11
|
eqtrid |
|
| 13 |
|
simprr |
|
| 14 |
1 7 8 9 5 12 13
|
lsmdisj2r |
|
| 15 |
6 14
|
eqtrid |
|
| 16 |
|
incom |
|
| 17 |
1 8 9 7 5 11
|
lsmdisj |
|
| 18 |
17
|
simprd |
|
| 19 |
16 18
|
eqtrid |
|
| 20 |
15 19
|
jca |
|
| 21 |
2
|
adantr |
|
| 22 |
3
|
adantr |
|
| 23 |
4
|
adantr |
|
| 24 |
|
simprl |
|
| 25 |
|
simprr |
|
| 26 |
1 21 22 23 5 24 25
|
lsmdisj2r |
|
| 27 |
1 21 22 23 5 24
|
lsmdisjr |
|
| 28 |
27
|
simprd |
|
| 29 |
26 28
|
jca |
|
| 30 |
20 29
|
impbida |
|