Metamath Proof Explorer


Theorem lsmdisj2b

Description: Association of the disjointness constraint in a subgroup sum. (Contributed by Mario Carneiro, 21-Apr-2016)

Ref Expression
Hypotheses lsmcntz.p ˙ = LSSum G
lsmcntz.s φ S SubGrp G
lsmcntz.t φ T SubGrp G
lsmcntz.u φ U SubGrp G
lsmdisj.o 0 ˙ = 0 G
Assertion lsmdisj2b φ S ˙ U T = 0 ˙ S U = 0 ˙ S T ˙ U = 0 ˙ T U = 0 ˙

Proof

Step Hyp Ref Expression
1 lsmcntz.p ˙ = LSSum G
2 lsmcntz.s φ S SubGrp G
3 lsmcntz.t φ T SubGrp G
4 lsmcntz.u φ U SubGrp G
5 lsmdisj.o 0 ˙ = 0 G
6 incom S T ˙ U = T ˙ U S
7 3 adantr φ S ˙ U T = 0 ˙ S U = 0 ˙ T SubGrp G
8 2 adantr φ S ˙ U T = 0 ˙ S U = 0 ˙ S SubGrp G
9 4 adantr φ S ˙ U T = 0 ˙ S U = 0 ˙ U SubGrp G
10 incom T S ˙ U = S ˙ U T
11 simprl φ S ˙ U T = 0 ˙ S U = 0 ˙ S ˙ U T = 0 ˙
12 10 11 eqtrid φ S ˙ U T = 0 ˙ S U = 0 ˙ T S ˙ U = 0 ˙
13 simprr φ S ˙ U T = 0 ˙ S U = 0 ˙ S U = 0 ˙
14 1 7 8 9 5 12 13 lsmdisj2r φ S ˙ U T = 0 ˙ S U = 0 ˙ T ˙ U S = 0 ˙
15 6 14 eqtrid φ S ˙ U T = 0 ˙ S U = 0 ˙ S T ˙ U = 0 ˙
16 incom T U = U T
17 1 8 9 7 5 11 lsmdisj φ S ˙ U T = 0 ˙ S U = 0 ˙ S T = 0 ˙ U T = 0 ˙
18 17 simprd φ S ˙ U T = 0 ˙ S U = 0 ˙ U T = 0 ˙
19 16 18 eqtrid φ S ˙ U T = 0 ˙ S U = 0 ˙ T U = 0 ˙
20 15 19 jca φ S ˙ U T = 0 ˙ S U = 0 ˙ S T ˙ U = 0 ˙ T U = 0 ˙
21 2 adantr φ S T ˙ U = 0 ˙ T U = 0 ˙ S SubGrp G
22 3 adantr φ S T ˙ U = 0 ˙ T U = 0 ˙ T SubGrp G
23 4 adantr φ S T ˙ U = 0 ˙ T U = 0 ˙ U SubGrp G
24 simprl φ S T ˙ U = 0 ˙ T U = 0 ˙ S T ˙ U = 0 ˙
25 simprr φ S T ˙ U = 0 ˙ T U = 0 ˙ T U = 0 ˙
26 1 21 22 23 5 24 25 lsmdisj2r φ S T ˙ U = 0 ˙ T U = 0 ˙ S ˙ U T = 0 ˙
27 1 21 22 23 5 24 lsmdisjr φ S T ˙ U = 0 ˙ T U = 0 ˙ S T = 0 ˙ S U = 0 ˙
28 27 simprd φ S T ˙ U = 0 ˙ T U = 0 ˙ S U = 0 ˙
29 26 28 jca φ S T ˙ U = 0 ˙ T U = 0 ˙ S ˙ U T = 0 ˙ S U = 0 ˙
30 20 29 impbida φ S ˙ U T = 0 ˙ S U = 0 ˙ S T ˙ U = 0 ˙ T U = 0 ˙